Bài 12: Tính diện tích tam giác ABC biết:
a) Độ dài 3 đường trung tuyến là 3cm; 4cm; 5cm.
b) Độ dài 3 đường cao 3cm; 4cm; 5cm.
Bài 1: Chứng minh rằng nếu 1 lục giác có các góc bằng nhau thì hiệu các cạnh đối diện bằng nhau
BÀI 2: Tính diện tích tam giác ABC biết AB=3,AC=5, trung tuyến AM=2.
Bài 3: Tính diện tích tam giác ABC biết độ dài 3 đường trung tuyến lần lượt là 15,36,39
Cho tam giác ABC biết AB=4cm, BC= 5cm, AC=8cm. AM là đường trung tuyến của tam giác ABC
a. Hãy tính diện tích tam giác ABC
b) tính độ dài đường trung tuyến AM
a, Diện tích tam giác ABC là :
S ABC^2 = (4+5+8)/2 . [(4+5+8)/2-4] . [(4+5+8)/2-5] . [(4+5+8)/2-6]
= 8,5 . 4,5 . 3,5 . 0,5 = 669,375 ( công thức hê-rông rùi bình phương 2 vế lên )
=> S ABC = 25,87228247 (cm2)
Tk mk nha
Tính diện tích tam giác ABC biết độ dài 3 đường trung tuyến là: 15; 36;39(cm)
Đặt câu hỏi gì mà NGU , ĐẦN thế bn
Có phải ở lớp bn có SƯ PHỤ tên là P..... đúng ko
Phúc ạ, chắt chê cụ ngu vậy chắt làm đi, ko mai đến lớp cụ sẽ xử đẹp!
Cho tam giác ABC biết a = sqrt(3) b = 2 ; tilde C =30^
a) Tính độ dài cạnh b ,c
b) Tính diện tích tam giác ABC và độ dài đường trung tuyến m_{a} kẻ từ đinh A của tam giác ABC
a: Xét ΔCAB có \(cosC=\dfrac{CA^2+CB^2-AB^2}{2\cdot CA\cdot CB}\)
=>\(\dfrac{2^2+3-AB^2}{2\cdot2\cdot\sqrt{3}}=cos30=\dfrac{\sqrt{3}}{2}\)
=>\(7-AB^2=4\sqrt{3}\cdot\dfrac{\sqrt{3}}{2}=2\cdot3=6\)
=>AB=1
b: Xét ΔABC có \(AB^2+BC^2=CA^2\)
nên ΔABC vuông tại B
=>\(S_{BAC}=\dfrac{1}{2}\cdot BA\cdot BC=\dfrac{1}{2}\cdot1\cdot\sqrt{3}=\dfrac{\sqrt{3}}{2}\)
Độ dài đường trung tuyến kẻ từ A là:
\(m_A=\sqrt{\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}}=\sqrt{\dfrac{4+1}{2}-\dfrac{3}{4}}=\dfrac{\sqrt{7}}{2}\)
Bài 1: Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH và AH = 12 cm ; BC = 25 cm.
a) Tìm độ dài của BH; CH; AB và AC.
b) Vẽ trung tuyến AM. Tính AM
c) Tìm diện tích của rAHM.
Bài 2: Cho tam giác DEF vuông tại D, đường cao DH. Biết DE = 12 cm; EF = 20. Tính DF; EH; FH.
Bài 3: Cho tam giác DEF vuông tại D, đường cao DH. Biết EH = 1 cm; FH = 4 cm. Tính EF; DE; DF.
Bài 4: BP 2017-2018
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4cm, CH = 9cm.
a) Tính độ dài đường cao AH và ABC của tam giác ABC.
b) Vẽ đường trung tuyến AM, (M e BC) của tam giác ABC. Tính AM và diện tích của tam giác
Bài 5. Đường cao của một tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài là 3 và 4 . Hãy tính các cạnh góc vuông của tam giác vuông này, đường trung tuyến ứng với cạnh huyền và diện tích tam giác ABC
Bài 6. (1.0 điểm)
Cho tam giác ABC vuông tại A, có AB = 15cm và AC = 20cm. Tính độ dài đường cao AH và trung tuyến AM của tam giác ABC.
câu c bài 1 là tích diện tích của tam giác AHM nhá'
Bài 1: Cho hình thoi ABCD có cạnh a=30,1975 cm và góc ABC=60 độ . G là trọng tâm tam giác
ABC . Tính diện tích tứ giác AGCD
Bài 2: Cho tam giác ABC vuông tại A có AB=6,251 cm và góc B=56 độ .
a, Tính BC, AC và góc C
b, Tính độ dài đường cao AH và diện tích tam giác ABC
c, Tính độ dài đường trung tuyến AM và phân giác AD của tam giác ABC
a) Cho tam giác ABC với đường trung tuyến AM và đường phân giác trong AD. Tính diện tích tam giác ADM, biết AB = m, AC = n (n > m) và diện tích tam giác ABC là S.
b) Khi cho n = 7cm, m = 3cm, hỏi rằng diện tích tam giác ADM chiếm bao nhiêu phần trăm diện tích tam giác ABC?
a) Ta có: (do hai tam giác có chung chiều cao từ đỉnh A)
ΔABC có AD là phân giác
b) Với n = 7; m = 3, thay vào kết quả phần a ta có:
Vậy diện tích tam giác ADM chiếm 20% diện tích tam giác ABC.
Cho tam giác $ABC$ vuông tại $A$ có $AH$ là đường cao. Biết $AH = 3cm$, $BH = 4cm$.
a) Tính độ dài trung tuyến $AM$
b) Tính độ dài đường phân giác $AD$.
AM = 3,125 , AD =15\(\sqrt{2}\): 7
a) Áp dụng hệ thức lượng trong tam giác vuông ABC, ta có:
.
.
.
b) Áp dụng định lý Pi-ta-go ta có:
.
.
Theo tính chất tia phân giác của một góc:.
Gọi E, F là chân đường vuông góc hạ từ D xuống AC và AB. Ta thấy ngay FDEA là hình vuông nội tiếp tam giác vuông ABC.
Từ đó ta có
.
a) Áp dụng hệ thức lượng trong tam giác vuông ABC, ta có:
.
.
.
b) Áp dụng định lý Pi-ta-go ta có:
.
.
Theo tính chất tia phân giác của một góc:.
Gọi E, F là chân đường vuông góc hạ từ D xuống AC và AB. Ta thấy ngay FDEA là hình vuông nội tiếp tam giác vuông ABC.
Từ đó ta có
.
a) cho tam giác ABC với đường trung tuyến AM và đường phân giác AD. Tính diện tích tam giác ADM biết AB=m, AC =n (n>m)và diện tích của tam giác ABC là S
b)cho n=7 cm, m=3cm ,hỏi diện tích tam giác ADM chiếm bao nhiêu phần trăm diện tích tam giác ABC
a) Cho tam giác ABC với đường trung tuyến AM và đường phân giác AD. Tính diện tích tam giác ADM, biết AB = m, AC = n (n > m) và diện tích của tam giác ABC là S
b) Cho n = 7cm, m = 3cm. Hỏi diện tích tam giác ADM chiếm bao nhiêu phần trăm diện tích tam giác ABC ?
Giải:
Ta có AD là đường phân giác của ∆ ABC nên
= = (kết quả ở bài 16)
=> =
hay = => = .
Giả sử AB < AC( m<n) vì AD là đường phân giác, AM là đường trung tuyến kẻ từ A nên AD nằm giữa AB và AM.
=> = -
=> = S -S =
a)
Có AB < AC (vì n > m) (1)
Ta có: \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\) ( vì AD là phân giác của góc BAC) (2)
Từ (1) và (2), ta có BD < CD
⇒ D nằm giữa B và M
Đặt S1, S2 lần lượt là diện tích △ADM và △ADC
Ta có: \(\dfrac{S_1}{S_2}=\dfrac{\dfrac{1}{2}.BD.AH}{\dfrac{1}{2}.CD.AH}=\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{m}{n}\)
⇒ \(\dfrac{S_1+S_2}{S_2}=\dfrac{m+n}{n}=\dfrac{S}{S_2}=\dfrac{m+n}{n}\Rightarrow S_2=\dfrac{n.S}{m+n}\)
Vì \(S_{AMC}=S_{AMB}=\dfrac{1}{2}.S\Rightarrow\)diện tích của △ADM là
\(S_{ADM}=S_{ADC}-S_{AMC}=S_2-\dfrac{1}{2}.S=\dfrac{n.S}{m+n}-\dfrac{1}{2}.S=\left[\dfrac{n-m}{2\left(m+n\right)}\right].S\)
b)
\(S_{ADM}=\left[\dfrac{7-3}{2\left(7+3\right)}\right].S=\dfrac{2}{10}.S=\dfrac{1}{5}.S=0,2.S=20\%.S\)
Vậy diện tích của △ADM bằng 20% diện tích của △ABC