a: Xét ΔCAB có \(cosC=\dfrac{CA^2+CB^2-AB^2}{2\cdot CA\cdot CB}\)
=>\(\dfrac{2^2+3-AB^2}{2\cdot2\cdot\sqrt{3}}=cos30=\dfrac{\sqrt{3}}{2}\)
=>\(7-AB^2=4\sqrt{3}\cdot\dfrac{\sqrt{3}}{2}=2\cdot3=6\)
=>AB=1
b: Xét ΔABC có \(AB^2+BC^2=CA^2\)
nên ΔABC vuông tại B
=>\(S_{BAC}=\dfrac{1}{2}\cdot BA\cdot BC=\dfrac{1}{2}\cdot1\cdot\sqrt{3}=\dfrac{\sqrt{3}}{2}\)
Độ dài đường trung tuyến kẻ từ A là:
\(m_A=\sqrt{\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}}=\sqrt{\dfrac{4+1}{2}-\dfrac{3}{4}}=\dfrac{\sqrt{7}}{2}\)