Tìm dư khi chia đa thức F(x) = x50 + x49 + ... + x2 + x + 1 cho x2 - 1
Giúp mình nhé
Đa thức f(x) khi chia cho x+1 dư 4 khi chia x2+1 dư 2x+3. Tìm đa thức dư khi chia f(x) cho (x+1)(x2+1)
1, Đa thức f(x) khi chia cho x+1 dư 4 khi chia x2+1 dư 2x+3. Tìm đa thức dư khi chia f(x) cho (x+1)(x2+1)
2, Cho P=(a+b)(b+c)(c+a)-abc với a,b,c là các số nguyên. CMR nếu a+b+c chia hết cho 4 thì P chia hết cho 4
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
Cho x1+x2+x3+...+x49+x50+x51=0 và x1+x2=x3+x4=...=x49+x50=1. Khi đó x51 nhận giá trị là...
Các bạn ghi luôn cả cách giải nhé!
Ta có : x1 + x2 + x3 + x4 + .......... +x49 + x50 + x51 = 0
<=> (x1 + x2) + (x3 + x4) + .......... + (x49 + x50) + x51 = 0
<=> 1 x 25 + x51 = 0 => x51 = 0 - 25
=> x51 = -25
Cho x1+x2+x3+...+x49+x50+x51=0 và x1+x2=x3+x4=...=x47+x48=x49+x50=x51+x52=1.
Tính x50.
giúp mk với nha!
$x_{52}$ ở đâu vậy bạn? Bạn xem lại đề.
Tìm dư của phép chia đa thức f(x) cho (x2 +1) (x-2) biết f(x) (chia x-2) dư 7 và f(x) : (x2 +1) dư 3x+5
Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?
a) Tìm đa thức f(x) = x2 + ax + b , biết khi chia f(x) cho x + 1 thì dư là 6, còn khi chia cho x – 2 thì dư là 3
b) Tìm giá trị nhỏ nhất của biểu thức A = x.(x – 3)
giải chi tiết ra nhé
Đa thức f(x) khi chia cho x−2 thì dư 5, khi chia cho x−3 thì dư 7, khi chia cho (x−2)(x−3) thì được thương là x2 − 1 và còn dư. Tìm đa thức f(x).
Nhanh lên mọi người mik cần gấp !!!!
Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)
\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)
Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)
Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)
Câu 10: Cho x1 + x2 + x3 +...+ x49 + x50 + x51 =0 và x1 + x2 = x3 + x4 =...= x50 + x49 = 1. Khi đó x51 nhận giá trị là:...
có 25 cặp xn+xn+1 = 1 => 25 + x51 = 0
=> x51=-25.
Chúc em học tốt!
biết rằng đa thức f(x) khi chia cho x-2 có số dư 6067, khi chia cho x+3 có số dư -4043. Tìm đa thức dư khi f(x) chia cho x2+x-6
Lời giải:
Gọi đa thức dư khi lấy $f(x)$ chia cho $x^2+x-6$ là $ax+b$ với $a,b\in\mathbb{R}$, $Q(x)$ là đa thức thương.
Theo bài ra ta có:
$f(2)=6067$
$f(-3)=-4043$
$f(x)=(x^2+x-6)Q(x)+ax+b=(x-2)(x+3)Q(x)+ax+b$
Cho $x=2$ thì:
$f(2)=0.Q(2)+2a+b=2a+b$
$\Leftrightarrow 6067=2a+b(1)$
Cho $x=-3$ thì:
$f(-3)=0.Q(-3)-3a+b=-3a+b$
$\Leftrightarrow -4043=-3a+b(2)$
Từ $(1); (2)\Rightarrow a=2022; b=2023$
Vậy đa thức dư là $2022x+2023$
cho mình hỏi :x1 + x2 +x3 + .....+x49 +x50 + x51=0 tim x51 biet x49 +x50 =1 lưu ý x1, x2 ,.... chi la con so thu nhat thu 2 thu ba thoi chứ ko phải là x nhan cho so nhe
toán lớp 6 khó lắm em mới học lớp 5 không biết làm