A=\(36^{38}\)+\(41^3\). A có chia hết cho 7 ko
a, số A= 101998 -4 có chia hết cho 3 ko? có chia hết cho 9 ko?
b, CMR: A= 3638 + 4133 chia hết cho 7
a) A = 101998 - 4
= 100...00 (1998 chữ số 0) - 4
= 99...996 (1997 chữ số 9)
Tổng các chữ số của số đó là: 9 . 1997 + 6 = 17979
Tổng các chữ số của 17979 là: 1 + 2 . (7 + 9) = 33
Mà 33 \(⋮\) 3 và \(⋮̸\) 9 nên A hay 101998 - 4 \(⋮\) 3 và \(⋮̸\) 9
Vậy...
a) A = 101998 - 4
= 100...00 (1998 chữ số 0) - 4
= 99...996 (1997 chữ số 9)
Tổng các chữ số của số đó là: 9 . 1997 + 6 = 17979
Tổng các chữ số của 17979 là: 1 + 2 . (7 + 9) = 33
Mà 33 ⋮⋮ 3 và ⋮/⋮̸ 9 nên A hay 101998 - 4 ⋮⋮ 3 và ⋮/⋮̸ 9
Vậy...
cmr: A = 3638 + 4133 chia hết cho 7
https://olm.vn/hoi-dap/question/109178.html
a) Số A=101998-4 có chia hết cho 3 không? Có chia hết cho 9 không?
b) Chứng minh rằng 3638+4133 chia hết cho 7
M=36^38+41^33 chia hết cho 7
Ta có:
\(M=36^{38}+41^{33}=\left(36^{38}-1\right)+\left(41^{33}+1\right)\)
\(\Rightarrow\left\{\begin{matrix}36^{38}-1=\left(36-1\right)\left(36^{37}+36^{36}+...+1\right)\\41^{33}+1=\left(41+1\right)\left(41^{32}-41^{31}+...+1\right)\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}35\left(36^{37}+36^{36}+...+1\right)=5.7.Q⋮7\\42\left(41^{32}-41^{31}+...+1\right)=6.7.Q⋮7\end{matrix}\right.\)\(\Leftrightarrow M⋮7\)
Vậy \(M=36^{38}+41^{33}⋮7\) (Đpcm)
CmR 36^38 + 41^33 chia hết cho 7
36^38+41^33
= 36^33 . 36^5 + 41^33
= 36^33 . 36^5 + 36^33 - 36^33 + 41^33
= 36^33(36^5+ 1) - (36^33 - 41^33)
= 77.Q1 - 77.Q2
=> chia hết cho 77
vì A chia hết 77 =>A chia hết cho 7 nên A= 36^38 + 41^33 chia hêt cho 7
Chứng minh rằng: 36^38 + 41^33 chia hết cho 7
\(36^{38}+41^{33}=\left(7.5+1\right)^{38}+\left(7.6-1\right)^{33}\equiv1^{38}+\left(-1\right)^{33}\equiv0\left(mod7\right)\)
ta có điều phải chứng minh
Chứng minh rằng : A = 36^38 + 41^33 chia hết cho 77
CM A chia hết cho 7 và 11. Nếu bạn đã biết qua về lý thuyết đồng dư thì có thể giải thế này:
* 36 mod 7 = 1 nên 36^38 mod 7 = 1; 41 mod 7 = -1 nên 41^33 mod 7 = (-1)^33 = -1
suy ra A mod 7 = 0 hay A chia hết cho 7.
* 36 mod 11 = 3, 41 mod 11 =-3 nên A mod 11 = 3^ 38 - 3^33 =3^33 (3^5 - 1) =3^33. 242
Vì 242 chia hết cho 11 nên A mod 11 = 0.
Vậy A chia hết cho 7.11 =77
Bài 1 : tìm n € N*
2^n+1 chia hết 7
n^5+1 chia hết n^3+1
Bài 2: chứng minh rằng
a+b+c chia hết cho 6 => a^3+b^3+c^3 chia hết cho 6
36^38+41^43 chia hết cho 77
5.25^n+18.2^n chia hết cho 23
CMR : a) 2^9+2^99 chia hết cho 100
b) 36^38+41^43 chia hết cho 77
#)Giải :
a) Đặt A = 29 + 299 = 29 + ( 211)9
A = ( 2 + 211)( 28 - 27 x 211 + ... - 2 x 277 + 288)
Nhân tử thứ nhất 2 + 211 = 2050
Nhân tử thứ hai là một số chẵn = 2A ( vì là tổng hiệu của các bội của 2 )
=> A = 2050 x 2A = 4100 x A => A chia hết cho 100
#)Giải :
b) A = 3638+4143
A = 3633 . 365 + 4133
A = 3633 . 365 + 3633 - 3633 + 4133
A = 3633 ( 365 + 1 ) - (3633 - 4133)
A = 77.Q1 - 77.Q2
=> A chia hết cho 77
#~Will~be~Pens~#
๖²⁴ʱŤ.Ƥεɳɠʉїɳş༉ ( Team TST 14 ):ai cho bạn cái công thức mà \(a^n-b^n⋮a+b????\)
Ta có:\(7\cdot11=77\) mà \(\left(7;11\right)=1\) nên ta cần CM \(36^{38}+41^{43}⋮11\) và 7.
Ta lại có:
\(36^{38}+41^{43}\)
\(=\left(36^{38}-1^{38}\right)+\left(41^{43}+1^{43}\right)\)
\(=35A+42B⋮7\left(1\right)\)
Mặt khác:
\(36^{38}+41^{43}\)
\(=\left(36^{38}-3^{38}\right)+\left(41^{33}+3^{33}\right)+\left(3^{38}-3^{33}\right)\)
\(=33P+44Q+3^{33}\left(3^5-1\right)\)
\(=11\left(3P+4Q+2.3^{33}\right)⋮11\left(2\right)\)
Từ (1);(2) suy ra đpcm.