Tìm x,y,z
x2-6x+y2+10y+34= -(4z-1)2
Tìm x y z : x^2 -6x+y^2+ 10y +34=-(4z-1)
Với điều kiện đã cho thì không tìm được $x,y,z$ cụ thể bạn nhé.
Tìm x,y,z
x2-6x+y2+10y+34= -(4z-1)2
x2−6x+y2+10y+34=−(4z−1)2
x^2-6x+9+y^2+10y+25+(4z-1)^2=0x2−6x+9+y2+10y+25+(4z−1)2=0
(x-3)^2+(y+5)^2+(4z-1)^2=0(x−3)2+(y+5)2+(4z−1)2=0
{nghiempt}x-3=0\\y+5=0\\4z-1=0
{nghiempt}x=3\\y=-5\\z={1}{4}
Tìm y biết
x2-6x+y2+10y+34= -(4z-1)2
x2-6x+y2+10y+34=-(4z-1)2
=>x2-6x+9+y2+10y+25+(4z-1)2=0=B
=>(x-3)2+(y+5)2+(4z-1)2=0
với mọi x,y,z ta có :
(x-3)2>=0
(y+5)2>=0
(4z-1)2>=0
=>(x-3)2+(y+5)2+(4z-1)2>=0
hay B>=0
dấu bằng xảy ra khi (x-3)2=0 => x-3=0 =>x=3
=>(y+5)2=0 =>y+5=0 =>y=-5
=>(4z-1)2=0 =>4z-1=0 => z=1/4
Vậy y=-5
x^20-6x+y^2+10y+34=-(4z-1)^2
giá trị của y thỏa mãn
x^2-6x+y^2+10y+34=-(4z-1)^2
gia tri cua y thoa man:x^2-6x+y^2+10y+34=-(4z-1)^2
Giá trị y thỏa mãn :
\(x^2-6x+y^2+10y+34=-\left(4z-1\right)^2\)
1) Tìm x, y, z
a) 9x2 +y2 + 2z2 – 18x +4z – 6y +20 = 0
b) 5x2 +5y2 +8xy+2y – 2x+2 = 0
c) 5x2 +2y2 + 4xy – 2x + 4y +5 = 0
d) x2 + 4y2 + z2 =2x + 12y – 4z – 14
e) x2 +y2 – 6x + 4y +2= 0
Giúp mik vs cần gấp!!!
\(a,\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a,9x^2+y^2+2z^2−18x+4z−6y+20=0
⇔9(x−1)^2+(y−3)^2+2(z+1)^2=0
⇔x=1;y=3;z=−1
b,5x^2+5y^2+8xy+2y−2x+2=0
⇔4(x+y)2+(x−1)2+(y+1)2=0
⇔x=−y;x=1y=−1⇔x=1y=−1
c,5x^2+2y^2+4xy−2x+4y+5=0
⇔(2x+y)^2+(x−1)^2+(y+2)^2=0
⇔2x=−y;x=1;y=−2
⇔x=1;y=−2
⇔(x−1)^2+(2y−3)^2+(z+2)^2=0
\(d,\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
\(\Rightarrow\)PT vô nghiệm vì 11 không phải là tổng 2 số chính phương
Gia tri cua y thoa man :
\(x^2-6x+y^2+10y+34=-\left(4z-1\right)^2\)
\(x^2-6x+y^2+10y+34=-\left(4z-1\right)^2\)
\(x^2-6x+9+y^2+10y+25+\left(4z-1\right)^2=0\)
\(\left(x-3\right)^2+\left(y+5\right)^2+\left(4z-1\right)^2=0\)
\(\left[\begin{array}{nghiempt}x-3=0\\y+5=0\\4z-1=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=3\\y=-5\\z=\frac{1}{4}\end{array}\right.\)