Tìm x biết:
a) 5x (x - 2) + 3x - 6 = 0
b) x 3 - 9x = 0
Tìm x biết:
a) 5x(x – 2) + 3x – 6 = 0
b) x 3 – 9 x = 0
tìm x, biết:
a)x^2+3x=0
b)x.(x-7).(x+7)=0
c)x^3-9x=0
d)x^2-5x-6=0
a) x^2+3x=0
<=> x(x+3)=0
<=> x+3=0
---> X=-3
b)x.(x-7).(x+7)=0
<=>x.(x^2-7^2)=0
<=> X^2-7^2=0
==>x= 7 và x=-7
c) x^3-9x=0
<=> x(x^2-3^2)=0
<=> x^2-3^2=0
~~> x = 3 và x=-3
d) x^2-5x-6=0
<=> x^2-5x-5-1=0
<=> (x^2-1)-(5x-5) =0
<=> x(x-1) - 5(x-1)=0
<=> (x-1)(x-5)=0
~~> x-1 = 0 ~> x=1
~~> x-5=0 ~~> x=5
Vậy x=1 và x=5
Tìm x biết
a.\(5x\left(x-2\right)+3x-6=0\)
b.\(x^3-9x=0\)
a)5x(x-2)+3x-6=0
5x(x-2)+3(x-2)=0
(5x+3)(x-2)=0
=> 5x+3=0 hoặc x-2=0
5x=-3 x=0+2
x=-3/5 x=2
Vậy x=-3/5 hoặc x=2
b)x3-9x=0
x(x2-9)=0
=>x=0 hoặc x2-9=0
x2=9
=>x=3 hoặc x=-3
Vậy x=0 hoặc x=3 hoặc x=-3
a) 5x(x - 2) + 3x - 6 = 5x(x - 2) + 3(x - 2) = (5x + 3)(x - 2) = 0 =>\(\orbr{\begin{cases}5x+3=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-0,6\\x=2\end{cases}}}\)
b) x3 - 9x = x(x2 - 9) = x(x - 3)(x + 3) => x = 0 hoặc x - 3 = 0 hay x + 3 = 0 =>\(x\in\left\{-3;0;3\right\}\)
a , 5 x ( x - 2 ) + 3 x - 6 = 0
5 x ( x - 2 ) + 3 ( x - 2 ) = 0
( 5 x + 3 ) ( x - 2 ) = 0
=> 5 x + 3 = 0 hoặc x - 2 = 0
5 x = -3 x = 0 + 2
x = \(\frac{-3}{5}\) x = 2
Vậy x = \(\frac{-3}{5}\)hoặc x = 2
b , x 3 - 9 x = 0
x ( x 2 - 9 ) = 0
x ( x 2 - 3 2 ) = 0
x ( x - 3 ) ( x + 3 ) = 0
=> x = 0 hoặc x - 3 = 0 hoặc x + 3 = 0
x = 3 x = -3
Vậy x = 0 hoặc x = 3 hoặc x = -3
Câu 2.(1,5 điểm) Tìm x, biết:
a) 5x(x2 – 9) = 0. b) 3(x+3) - x2 - 3x =0. c) x2 – 9x – 10 = 0
\(a,5x\left(x^2-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ b,3\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow3\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(3-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\\ c,x^2-9x-10=0\\ \Leftrightarrow x^2+x-10x-10=0\\ \Leftrightarrow x\left(x+1\right)-10\left(x+1\right)=0\\ \Leftrightarrow\left(x-10\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=10\end{matrix}\right.\)
a, 5\(x\)(\(x^2\) - 9) = 0
\(\left[{}\begin{matrix}x=0\\x^2-9=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy \(x\) \(\in\) { -3; 0; 3}
b, 3.(\(x+3\)) - \(x^2\) - 3\(x\) = 0
3.(\(x+3\)) - \(x\).( \(x\) + 3) = 0
(\(x+3\))( 3 - \(x\)) = 0
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(x\) \(\in\){ -3; 3}
c, \(x^2\) - 9\(x\) - 10 = 0
\(x^2\) + \(x\) - 10\(x\) - 10 = 0
\(x.\left(x+1\right)\) - 10.( \(x-1\)) = 0
(\(x+1\))(\(x-10\)) = 0
\(\left[{}\begin{matrix}x+1=0\\x-10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-1\\x=10\end{matrix}\right.\)
Vậy \(x\) \(\in\){ -1; 10}
a) 5x(x2-9)=0
=> TH1 5x=0
<=> x= 0
TH2: 2x-9=0
<=> 2x=9
<=> x = \(\dfrac{9}{2}\)
b, 3(x+3) - x2- 3x = 0
<=> 3x + 9 - x2 -3x = 0
<=> - x2 +9 = 0
<=> - x2 = -9
<=> x = 3
c, x2 -9x -10 = 0
<=> x2 -x + 10x -10 = 0
<=> x(x-1)+10(x-1)=0
<=> (x-1)(x+10)=0
=> TH1: x-1=0
<=> x=1
TH2: x +10=0
<=> x=-10
Tìm x , biết :
a. \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
b. \(2x^3-50x=0\)
c.\(5x^2-4\left(x^2-2x+1\right)-5=0\)
d. \(x^3-x=0\)
e. \(27x^3-27x^2+9x-1=1\)
a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x+25=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
b) Ta có: \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)
d) Ta có: \(x^3-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
e) Ta có: \(27x^3-27x^2+9x-1=1\)
\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)
\(\Leftrightarrow\left(3x-1\right)^3=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow3x=2\)
hay \(x=\dfrac{2}{3}\)
Tìm x , biết :
a) x^3 - 9x = 0
b) x^2 - 5x - 6 = 0
a/ => x(x2 - 9) = 0
=> x(x - 3)(x + 3) = 0
=> x = 0
hoặc x - 3 = 0 => x = 3
hoặc x + 3 = 0 => x = -3
Vậy x = 0 ; x = 3 ;x = -3
b/ => x2 - 6x + x - 6 = 0
=> x(x - 6) + (x - 6) = 0
=> (x + 1)(x - 6) = 0
=> x + 1 = 0 => x = -1
hoặc x - 6 = 0 => x = 6
Vậy x = -1 ; x = 6
a)
x(x^2-9)=0
x(x^2-3^2)=0
x(x-3)(x+3)
b) x^2-6x+x-6=0
x(x-6)+(x-6)=0
(x-6)(x+1)=0
bài 2; tìm x
a, 5x ( x - 1 ) + ( x + 17 ) = 0
b, 3x ( x - 3 ) mũ 2 - 3x ( x + 3 ) mũ 2 = 0
c, 7 - 9x + 2x mũ 2 = 0
d, 7 - 9x + 2x mũ 2 = 0
a, \(5x\left(x-1\right)+\left(x+17\right)=0\)
\(\Leftrightarrow5x^2-5x+x+17=0\Leftrightarrow5x^2-4x+17=0\)
\(\Leftrightarrow5\left(x^2-\frac{4}{5}x\right)+17=0\Leftrightarrow5\left(x^2-2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}\right)+17=0\)
\(\Leftrightarrow5\left(x-\frac{2}{5}\right)^2-\frac{4}{5}+17=0\Leftrightarrow5\left(x-\frac{2}{5}\right)^2+81\ge81>0\)
Vậy pt vô nghiệm
b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)
\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\Leftrightarrow x.2x=0\Leftrightarrow x=0\)
c, \(2x^2-9x+7=0\Leftrightarrow2x^2-7x-2x+7=0\)
\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\Leftrightarrow\left(x-1\right)\left(2x-7\right)=0\Leftrightarrow x=1;x=\frac{7}{2}\)
Trả lời:
a, \(5x\left(x-1\right)+\left(x+17\right)=0\)
\(\Leftrightarrow5x^2-5x+x+17=0\)
\(\Leftrightarrow5x^2-4x+17=0\)
\(\Leftrightarrow5\left(x^2-\frac{4}{5}x+\frac{17}{5}\right)=0\)
\(\Leftrightarrow x^2-\frac{4}{5}x+\frac{17}{5}=0\)
\(\Leftrightarrow x^2-2.x.\frac{2}{5}+\frac{4}{25}+\frac{81}{25}=0\)
\(\Leftrightarrow\left(x-\frac{2}{5}\right)^2+\frac{81}{25}=0\)
Vì \(\left(x-\frac{2}{5}\right)^2+\frac{81}{25}\ge\frac{81}{25}>0\forall x\)
nên pt vô nghiệm
b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)
\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\)
\(\Leftrightarrow3x.\left(-9\right).2x=0\)
\(\Leftrightarrow-54x^2=0\)
\(\Leftrightarrow x^2=0\)
\(\Leftrightarrow x=0\)
Vậy x = 0 là nghiệm của pt.
c, \(7-9x+2x^2=0\)
\(\Leftrightarrow2x^2-7x-2x+7=0\)
\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=1\end{cases}}}\)
Vậy x = 7/2; x = 1 là nghiệm của pt.
d, trùng ý c
tìm X
a) x^3-5x^2-9x=0
b)(4x-3)^2-3x(3-4x)=0
Tìm x,biết
b) |3/4x-5|-2/3=|-1/4|
a) (3x-1) (-1/4 - 5x) (-2/7x + 3)=0
c)|-2/5 - 3x| - |-7/9 + 2x|=0
d) |-3/7x - 1| + |5+2/3x|=0
e)|3x-1|+|9x^2 - 1|=0
f) x+2/2018 + x+4/2016 = x+6/2014 - 1
Mọi người giải giúp e với ạ chiều e phải nộp r
ngu thế à bạn