Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tuấn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 1:23

1: Xét ΔABC có AB=AC

nên ΔBAC cân tại A

Suy ra: \(\widehat{B}=\widehat{C}\)

Ta có: ΔABC cân tại A

mà AH là đường trung tuyến ứng với cạnh đáy BC

nên AH là đường cao ứng với cạnh BC

Nguyễn Tuấn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 1:22

1: Xét ΔAOC và ΔBOD có 

OA=OB

\(\widehat{AOC}=\widehat{BOD}\)

OC=OD

Do đó: ΔAOC=ΔBOD

Suy ra: \(\widehat{ACO}=\widehat{BDO}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

Nguyễn Tuấn Linh
Xem chi tiết
Phan Lại Huyền Trang
30 tháng 8 2021 lúc 10:21

1. Vì N là trung điểm của AC do đó AN = CN

    Ta có P là điểm kéo dài từ A cắt tia MN nên M, N, P là 3 điểm thẳng hàng

     \(\Rightarrow\)N là trung điểm của MP và MN = NP

    Xét \(\Delta PNA\) và \(\Delta MNC\) ta có :

            AN = NC (cmt)

            \(\widehat{PNA}\) = \(\widehat{MNC}\) ( hai góc đối đỉnh )

            MN = NP (cmt)

    \(\Rightarrow\Delta PNA=\Delta MNC\) ( c.g.c )

    \(\Rightarrow AP=MC\) ( hai cạnh tương ứng )

2. Xét \(\Delta ANM\) và \(\Delta PNC\) ta có :

             AN = NC (cmt)

             \(\widehat{ANM}\) = \(\widehat{PNC}\) ( hai góc đối đỉnh )

              MN = NP (cmt)

     \(\Rightarrow\Delta ANM=\Delta PNC\) ( c.g.c )

     \(\Rightarrow AM=PC\) ( hai cạnh tương ứng )

     \(\Rightarrow AM\)//\(PC\)

     Vì \(\Delta ABC\) có AB = AC nên \(\Delta ABC\) là tam giác cân tại A

     Mà M là trung điểm của BC \(\Rightarrow BM=MC\) nên AM là đường trung trực của đoạn thẳng BC hay AM ⊥ BC

     Áp dụng theo quan hệ giữa tính vuông góc và tính song song "nếu a//b và c⊥a thì b⊥c"

     Từ đó ta suy ra PC ⊥ BC

2. Vì AP = MC nên AP = BM ( cùng MC )

    Điểm I được nối qua N và nằm trên đoạn thẳng AM nên ba điểm A, I, M thẳng hàng ⇒ I là trung điểm của AM và AI = IM

    Xét \(\Delta AIP\) và \(\Delta MIB\) ta có :

              AP = PM (cmt)

              AI = IM (cmt)

     \(\Rightarrow\Delta AIP=\Delta MIB\) ( trường hợp bằng nhau hai cạnh góc vuông của tam giác vuông )

*Thưa bạn, câu 4 mình không biết giải nên mong bạn thông cảm. Nếu bài mình có chỗ nào không đúng thì bạn sửa lại giúp mình nhé!

Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 15:15

4: Xét ΔAMC có 

I là trung điểm của AM

N là trung điểm của AC

Do đó: IN là đường trung bình của ΔAMC

Suy ra: IN//MC

hay IN//BC

Tuấn
Xem chi tiết
Tuấn
Xem chi tiết
Đoàn Đức Hà
30 tháng 8 2021 lúc 10:11

1. Xét hai tam giác \(PNA\)và \(MNC\):

\(\widehat{PNA}=\widehat{MNC}\)(hai góc đối đỉnh)

\(AN=NC\)

\(\widehat{NCM}=\widehat{NAP}\)(hai góc so le trong) 

Suy ra \(\Delta PNA=\Delta MNC\left(g.c.g\right)\)

2. Xét tứ giác \(APCM\)có: \(AP//MC,AP=CM\)

do đó \(APCM\)là hình bình hành. 

Suy ra \(PC=AM\).

Xét tam giác \(ABC\)có \(AB=AC\)nên tam giác \(ABC\)cân tại \(A\)

do đó trung tuyến \(AM\)đồng thời là đường cao của tam giác \(ABC\)

\(\Rightarrow AM\perp BC\)

\(APCM\)là hình bình hành nên \(PC//AM\)

suy ra \(PC\perp BC\).

3. Xét tam giác \(AIP\)và tam giác \(MIB\)

\(\widehat{API}=\widehat{MBI}\)(hai góc so le trong) 

\(BM=AP\left(=MC\right)\)

\(\widehat{PAI}=\widehat{BMI}\left(=90^o\right)\)

suy ra \(\Delta AIP=\Delta MIB\left(g.c.g\right)\)

4. \(\Delta AIP=\Delta MIB\Rightarrow AI=MI\)

suy ra \(I\)là trung điểm của \(AM\).

Xét tam giác \(AMC\)

\(I,N\)lần lượt là trung điểm của \(AM,AC\)nên \(IN\)là đường trung bình của tam giác \(AMC\)

suy ra \(IN//BC\).

Khách vãng lai đã xóa
Nguyễn Tuấn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 14:57

4: Xét ΔAMC có 

I là trung điểm của AM

N là trung điểm của AC

Do đó: IN là đường trung bình của ΔAMC

Suy ra: IN//MC

hay IN//BC

Nguyễn Tuấn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 1:13

1: Xét ΔABC có AB=AC

nên ΔABC cân tại A

Suy ra: \(\widehat{B}=\widehat{C}\)

Ta có: ΔBAC cân tại A

mà AH là đường trung tuyến ứng với cạnh đáy BC

nên AH là đường cao ứng với cạnh BC

Nguyễn Tuấn Linh
Xem chi tiết
Rin Huỳnh
30 tháng 8 2021 lúc 9:53

1. Tam giác AOC và tam giác BOD có: AO = BO; CO = DO: góc AOC = góc BOD (đối đỉnh)

--> tam giác AOC = tam giác BOD (c.g.c)

--> góc ACO = góc ODB

Mà 2 góc này ở vị trí so le trong

--> AC // BD

Rin Huỳnh
30 tháng 8 2021 lúc 9:55

b) Tam giác ACD và tam giác BDC có: CD chung; AC = BD (do tam giác AOC = tam giác BOD); góc ACO = góc ODB (câu a)

--> tam giác ACD = tam giác BDC

Rin Huỳnh
30 tháng 8 2021 lúc 9:58

c) tam giác ACD = tam giác BDC (câu b)

--> góc DBC = góc CAD

Tam giác DAE và tam giác CBF có: góc DBC=góc CAD; AE = BF; BC = AD

--> tam giác DAE = tam giác CBF (c.g.c)

Nguyễn Tuấn Linh
Xem chi tiết
Akai Haruma
27 tháng 8 2021 lúc 9:31

Đây là bài bạn phải nộp cho thầy nên mình sẽ không làm chi tiết. Nhưng mình có thể gợi ý cho bạn như sau:

1. 

Đối với tỉ lệ thức đã cho, mỗi phân số ta nhân cả tử và mẫu với 4, 3, 2. Khi đó, ta thu được 1 tỉ lệ thức mới

Dùng tỉ lệ thức trên, áp dụng tính chất dãy tỉ số bằng nhau (cộng), ta thu được $12x=8y=6z(*)$

Tiếp tục áp dụng tính chất dãy tỉ số bằng nhau cho $(*)$ dựa theo điều kiện $x+y+z=18$ ta sẽ tính được $x,y,z$ thỏa mãn.

Akai Haruma
27 tháng 8 2021 lúc 9:34

2. 

Áp dụng tính chất dãy tỉ số bằng nhau (cộng) cho 3 phân số đầu tiên, ta sẽ tìm được tổng $x+y+z$

Khi tìm được tổng $x+y+z$, cộng vào 3 phân số đầu tiên trong bài, mỗi phân số cộng thêm 1. Khi đó, ta thu được tỉ lệ thức $\frac{m}{x}=\frac{n}{y}=\frac{p}{z}(*)$ với $m,n,p$ đã tính được dựa theo giá trị $x+y+z$. 

Áp dụng tính chất dãy tỉ số bằng nhau cho tỉ lệ thức $(*)$, kết hợp với kết quả $x+y+z$ thì bài toán đã rất quen thuộc rồi.

 

Minh Hiếu
27 tháng 8 2021 lúc 9:40

b)áp dụng tính chất dãy tỉ số = nhau ta có:

y+z+6+z+x+7+x+y-13/x+y+z

=2(x+y+z)/x+y+z=2

=>x+y+z=0,5

thay vào bài ta được:

0,5-x+6/x=0,5-y+7/y=0,5-z-13=2

6,5-x/x=7,5-y/y=-12,5-z/z=2

x,y,z tự tính