Học tại trường Chưa có thông tin
Đến từ Thành phố Hồ Chí Minh , Chưa có thông tin
Số lượng câu hỏi 2
Số lượng câu trả lời 96
Điểm GP 14
Điểm SP 157

Người theo dõi (24)

Đang theo dõi (26)

Minz Ank
Kim Thinn
Bạch Băng Nhi
ADSVN. VN

Câu trả lời:

1. Vì N là trung điểm của AC do đó AN = CN

    Ta có P là điểm kéo dài từ A cắt tia MN nên M, N, P là 3 điểm thẳng hàng

     \(\Rightarrow\)N là trung điểm của MP và MN = NP

    Xét \(\Delta PNA\) và \(\Delta MNC\) ta có :

            AN = NC (cmt)

            \(\widehat{PNA}\) = \(\widehat{MNC}\) ( hai góc đối đỉnh )

            MN = NP (cmt)

    \(\Rightarrow\Delta PNA=\Delta MNC\) ( c.g.c )

    \(\Rightarrow AP=MC\) ( hai cạnh tương ứng )

2. Xét \(\Delta ANM\) và \(\Delta PNC\) ta có :

             AN = NC (cmt)

             \(\widehat{ANM}\) = \(\widehat{PNC}\) ( hai góc đối đỉnh )

              MN = NP (cmt)

     \(\Rightarrow\Delta ANM=\Delta PNC\) ( c.g.c )

     \(\Rightarrow AM=PC\) ( hai cạnh tương ứng )

     \(\Rightarrow AM\)//\(PC\)

     Vì \(\Delta ABC\) có AB = AC nên \(\Delta ABC\) là tam giác cân tại A

     Mà M là trung điểm của BC \(\Rightarrow BM=MC\) nên AM là đường trung trực của đoạn thẳng BC hay AM ⊥ BC

     Áp dụng theo quan hệ giữa tính vuông góc và tính song song "nếu a//b và c⊥a thì b⊥c"

     Từ đó ta suy ra PC ⊥ BC

2. Vì AP = MC nên AP = BM ( cùng MC )

    Điểm I được nối qua N và nằm trên đoạn thẳng AM nên ba điểm A, I, M thẳng hàng ⇒ I là trung điểm của AM và AI = IM

    Xét \(\Delta AIP\) và \(\Delta MIB\) ta có :

              AP = PM (cmt)

              AI = IM (cmt)

     \(\Rightarrow\Delta AIP=\Delta MIB\) ( trường hợp bằng nhau hai cạnh góc vuông của tam giác vuông )

*Thưa bạn, câu 4 mình không biết giải nên mong bạn thông cảm. Nếu bài mình có chỗ nào không đúng thì bạn sửa lại giúp mình nhé!