Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức Anh 2k9
Xem chi tiết
Mai Anh Nguyen
29 tháng 8 2021 lúc 22:14

Với n = 1 thì \(x^1\ge2.x^0=0\)

Giả sử đẳng thức đúng với n = k nghĩa là : \(x^k\ge\left(k+1\right).x^{k-1}\).

Ta phải chứng minh :

\(x^n\ge\left(n+1\right).x^{n-1}\)đúng với n = k + 1. Ta phải chứng minh \(x^{k+1}\ge\left[\left(k+1\right)+1\right].x^{\left(k-1\right)+1}=\left(k+2\right).x^k\)

\(=\left(x^k.k+2x^k+1\right)-1=\left(x^k+1\right)^2-1\le x^{k+1}\)

Vậy đẳng thức luôn đúng với mọi \(n\inℕ^∗\)

Khách vãng lai đã xóa
Núi non tình yêu thuần k...
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 12 2021 lúc 11:44

\(a,n=1\Leftrightarrow\dfrac{1}{1.2}=\dfrac{1}{2}\left(đúng\right)\\ G\text{/}s:n=k\Leftrightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{k\left(k+1\right)}=\dfrac{k}{k+1}\\ \text{Với }n=k+1\\ \text{Cần cm: }\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{k\left(k+1\right)}+\dfrac{1}{\left(k+1\right)\left(k+2\right)}=\dfrac{k+1}{k+2}\\ \text{Ta có }VT=\dfrac{k}{k+1}+\dfrac{1}{\left(k+1\right)\left(k+2\right)}=\dfrac{k^2+2k+1}{\left(k+1\right)\left(k+2\right)}\\ =\dfrac{\left(k+1\right)^2}{\left(k+1\right)\left(k+2\right)}=\dfrac{k+1}{k+2}=VP\)

Vậy với \(n=k+1\) thì mệnh đề cũng đúng

Vậy theo pp quy nạp ta đc đpcm

Big City Boy
Xem chi tiết
Hoàng Phúc
Xem chi tiết
Tung
Xem chi tiết
Trần Thùy
Xem chi tiết
Big City Boy
Xem chi tiết
Kaneki Ken
Xem chi tiết
Trần Thị Loan
28 tháng 10 2015 lúc 22:41

Kí hiệu đăng thức cần chứng minh là (*)

+) Với n = 1 thì 1 = \(\frac{1.\left(1+1\right)}{2}\) => (*) đúng

+) Giả sử (*) đúng với n = k , tức là: 1 + 2 + 3 + ....+ k = \(\frac{k\left(k+1\right)}{2}\)

Ta chứng minh (*) đúng với n = k+ 1, tức là: 1 + 2 + 3+ ...+ k + (k+1) = \(\frac{\left(k+1\right)\left(k+2\right)}{2}\)

Thật vậy, 1 + 2 + 3 + ....+ k + (k+1) = \(\frac{k\left(k+1\right)}{2}\) + (k+1) = \(\frac{k\left(k+1\right)+2\left(k+1\right)}{2}=\frac{\left(k+1\right)\left(k+2\right)}{2}\)

=> (*) đúng với n = k+ 1

Vậy.....

 

Nguyễn Huy Hải
28 tháng 10 2015 lúc 22:36

1 + 2 + 3 + ... + n = (n + 1) + (n - 1 + 2) + ... (n:2 cặp)

= (n + 1) + (n + 1) + (n + 1) + ... + (n + 1) (n:2 cặp)

= (n + 1).n : 2 (đpcm)

Lê Chí Cường
28 tháng 10 2015 lúc 22:45

*Xét n=2=>\(1+...+n=1+2=3=\frac{6}{2}=\frac{2.3}{2}=\frac{2.\left(2+1\right)}{2}=\frac{n.\left(n+1\right)}{2}\)

*Xét n=3=>\(1+...+n=1+2+3=6=\frac{12}{2}=\frac{3.4}{2}=\frac{3.\left(3+1\right)}{2}=\frac{n.\left(n+1\right)}{2}\)

Giả sử mệnh đề luôn đúng với n=k, ta cần chứng minh mệnh đề luôn đúng với n=k+1

Ta có: \(1+...+n=1+...+k=\frac{k.\left(k+1\right)}{2}\)

=>\(1+...+k+\left(k+1\right)=\frac{k.\left(k+1\right)}{2}+\left(k+1\right)\)

=>\(1+...+\left(k+1\right)=\frac{k.\left(k+1\right)}{2}+\frac{2.\left(k+1\right)}{2}\)

=>\(1+...+\left(k+1\right)=\frac{k.\left(k+1\right)+2.\left(k+1\right)}{2}\)

=>\(1+...+\left(k+1\right)=\frac{\left(k+1\right).\left(k+2\right)}{2}\)

=>\(1+...+\left(k+1\right)=\frac{\left(k+1\right).\left(\left(k+1\right)+1\right)}{2}\)

=>Thoả mãn

=>Phép quy nạp đã được chứng minh

=>ĐPCM