Dùng phương pháp quy nạp chứng minh rằng :
\(n^n\ge\left(n+1\right)^{n-1}\forall n\in\)ℕ∗
Chứng minh rằng:
\(n^n\ge\left(n+1\right)^{n-1}\forall n\inℕ^∗\)
Chứng minh bằng phương pháp quy nạp nhé
Với n = 1 thì \(x^1\ge2.x^0=0\)
Giả sử đẳng thức đúng với n = k nghĩa là : \(x^k\ge\left(k+1\right).x^{k-1}\).
Ta phải chứng minh :
\(x^n\ge\left(n+1\right).x^{n-1}\)đúng với n = k + 1. Ta phải chứng minh \(x^{k+1}\ge\left[\left(k+1\right)+1\right].x^{\left(k-1\right)+1}=\left(k+2\right).x^k\)
\(=\left(x^k.k+2x^k+1\right)-1=\left(x^k+1\right)^2-1\le x^{k+1}\)
Vậy đẳng thức luôn đúng với mọi \(n\inℕ^∗\)
Chứng minh các mệnh đề sau theo phương pháp qui nạp dãy số:
\(a,\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{n}{n+1}\) \(\forall n\in N\) *
\(b,1+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\forall n\ge2\)
Chứng minh các mệnh đề sau theo phương pháp qui nạp dãy số:
\(a,\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{n}{n+1}\forall n\in N\)*
\(b,1+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\forall n\ge2\)
\(a,n=1\Leftrightarrow\dfrac{1}{1.2}=\dfrac{1}{2}\left(đúng\right)\\ G\text{/}s:n=k\Leftrightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{k\left(k+1\right)}=\dfrac{k}{k+1}\\ \text{Với }n=k+1\\ \text{Cần cm: }\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{k\left(k+1\right)}+\dfrac{1}{\left(k+1\right)\left(k+2\right)}=\dfrac{k+1}{k+2}\\ \text{Ta có }VT=\dfrac{k}{k+1}+\dfrac{1}{\left(k+1\right)\left(k+2\right)}=\dfrac{k^2+2k+1}{\left(k+1\right)\left(k+2\right)}\\ =\dfrac{\left(k+1\right)^2}{\left(k+1\right)\left(k+2\right)}=\dfrac{k+1}{k+2}=VP\)
Vậy với \(n=k+1\) thì mệnh đề cũng đúng
Vậy theo pp quy nạp ta đc đpcm
Chứng minh bằng phương pháp quy nạp toán học: \(\forall n\in N\)*, n>1; ta có: \(\dfrac{1}{n+1}+\dfrac{1}{n+2}+...+\dfrac{1}{2n}>\dfrac{13}{24}\)
Chứng minh=phương pháp quy nạp
Chứng minh \(\sqrt{n}< 1+\frac{1}{\sqrt{2}}+.......+\frac{1}{\sqrt{n}}< 2.\sqrt{n}\) \(\left(n\in N,n>1\right)\)
chứng minh bằng phương pháp quy nạp: \(\left(1+a\right)^n\ge1+na;a>-1,n\in N,n\ge1\)
Chứng minh bằng phương pháp quy nạp:
\(x_i>1,\forall i=1,2,.....,n\)thì \(\frac{1}{1+x_i}+\frac{1}{1+x_2}+.....................+\frac{1}{1+x_n}\ge\frac{n}{1+\sqrt[n]{x_1x_2.........x_n}}\)
Chứng minh bằng phương pháp quy nạp toán học: \(\forall n\in N\)*, ta luôn có: \(sin^{2n}\alpha+cos^{2n}\alpha\le1\)
Chứng minh bằng phương pháp quy nạp : 1 + 2 + 3 + ... + n = \(\frac{n.\left(n+1\right)}{2}\) ( n thuộc N*)
Kí hiệu đăng thức cần chứng minh là (*)
+) Với n = 1 thì 1 = \(\frac{1.\left(1+1\right)}{2}\) => (*) đúng
+) Giả sử (*) đúng với n = k , tức là: 1 + 2 + 3 + ....+ k = \(\frac{k\left(k+1\right)}{2}\)
Ta chứng minh (*) đúng với n = k+ 1, tức là: 1 + 2 + 3+ ...+ k + (k+1) = \(\frac{\left(k+1\right)\left(k+2\right)}{2}\)
Thật vậy, 1 + 2 + 3 + ....+ k + (k+1) = \(\frac{k\left(k+1\right)}{2}\) + (k+1) = \(\frac{k\left(k+1\right)+2\left(k+1\right)}{2}=\frac{\left(k+1\right)\left(k+2\right)}{2}\)
=> (*) đúng với n = k+ 1
Vậy.....
1 + 2 + 3 + ... + n = (n + 1) + (n - 1 + 2) + ... (n:2 cặp)
= (n + 1) + (n + 1) + (n + 1) + ... + (n + 1) (n:2 cặp)
= (n + 1).n : 2 (đpcm)
*Xét n=2=>\(1+...+n=1+2=3=\frac{6}{2}=\frac{2.3}{2}=\frac{2.\left(2+1\right)}{2}=\frac{n.\left(n+1\right)}{2}\)
*Xét n=3=>\(1+...+n=1+2+3=6=\frac{12}{2}=\frac{3.4}{2}=\frac{3.\left(3+1\right)}{2}=\frac{n.\left(n+1\right)}{2}\)
Giả sử mệnh đề luôn đúng với n=k, ta cần chứng minh mệnh đề luôn đúng với n=k+1
Ta có: \(1+...+n=1+...+k=\frac{k.\left(k+1\right)}{2}\)
=>\(1+...+k+\left(k+1\right)=\frac{k.\left(k+1\right)}{2}+\left(k+1\right)\)
=>\(1+...+\left(k+1\right)=\frac{k.\left(k+1\right)}{2}+\frac{2.\left(k+1\right)}{2}\)
=>\(1+...+\left(k+1\right)=\frac{k.\left(k+1\right)+2.\left(k+1\right)}{2}\)
=>\(1+...+\left(k+1\right)=\frac{\left(k+1\right).\left(k+2\right)}{2}\)
=>\(1+...+\left(k+1\right)=\frac{\left(k+1\right).\left(\left(k+1\right)+1\right)}{2}\)
=>Thoả mãn
=>Phép quy nạp đã được chứng minh
=>ĐPCM