cho a/b=c/d khac 1 va a,b,c,d khac 0. chung minh (a-b)^2/(c-d)^2=ab/cd
cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) voi a; b; c khac 0 va c khac cong tru d . CMR \(\frac{a}{b}=\frac{c}{d}\)
co ai biet ko? Neu biet thi giup mk voi
Cho a^2+b^2tat ca/c^2+d^2 =ab/cd
va a,b,c,d khac 0
cm a/b=c/d hoac a/b=d/c
cho tỉ lệ thức \(\dfrac{a}{b}\)chung minh \(\dfrac{a}{a-b}=\dfrac{a}{c-d}\)(giả thiet a khac b ,c khac d va a,b,c khac 0
Thiếu nhé:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\)
Ta có điều phải chứng minh
: biết a^2+b^2/c^2+d^2=ab/cd với a,b,c, d khac 0 Chứng minh rằng :
a/b=c/d hoặc a/b=d/c
1) cho a/b=c/d chung minh:
a) a^2+c^2/b^2+d^2=a^2-c^2/b^2+d^2
b) (a+c)^2/(b+d)^2=(a-c)^2/b^2+d^2
2) a) cho x/y=y/z=z/x va x+y+z khac 0
tinhx^333.z^666/y^999
b) cho a.c=b^2 ; a.b=c^2 va a+b khac 0 ; a ; b ; c kha 0 ,tinh b^333/a^111.c^222
chung minh rang tu ti le thuc a/b=c/d (a-b khac 0,c-d khac 0) ta co the suy ra ti le thuc a+b/a-b=c+d/c
ai giai nhanh va dung cho toi hieu toi se tich nguoi do
Cho a = b + c va c = bd/b -d ( b , d khac 0 ) .chung minh rang a/b = c/d
cho a, b, c, d khac 0 va thoa man
ac=b^2; bd=c^2
chung minh \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
cho ti le thuc voi a,b,c,d thuoc z b,d khac 0 chung minh rang a^2 + b^2 phần c^2 + d^2 =a*b phần c*d
Đặt:a/b=c/d=k =>a=bk,c=dk
Thay vào vế trái ta có:
a^2+b^2/c^2+d^2=b^2.k^2+b^2/d^2.k^2+d^2=b^2+b^2/d^2+d^2=2b^2/2d^2=b^2/d^2(1)
Thay vào vế phải ta có:
ab/cd=b^2.k/d^2.k=b^2/d^2(2)
Từ 1 và 2 =>đpcm