cho a/b=c/d khac 1 va c khac 0
CMR:
a)((a.b)/(c.d))^2=(a.b)/(c-d)
b)((a.b/c.d))^3=((a^3-b^3)/(a^3-d^3))
chờ (a^2+b^2)/(c^2+d^2)=(à.b)/(c.d) (với a;b;c;d ko bằng 0;c ko bằng d;-d)
CMR:a/b=c/d hoac a/b=d/c
cho tỉ lệ thức \(\dfrac{a}{b}\)chung minh \(\dfrac{a}{a-b}=\dfrac{a}{c-d}\)(giả thiet a khac b ,c khac d va a,b,c khac 0
Biết \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với a,b,c,d khác 0. Chứng minh rằng: \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\)
Cho a/b = c/d . Chứng minh a^2 + b^2 / c^2 + d^2 = ab/ cd
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng
a) \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)
Bài 1: Cho \(\frac{a}{b}=\frac{c}{d}\) .CM:
a) \(\frac{a^2}{a^2+b^2}=\frac{c^2}{c^2+d^2}\) b) \(\left(\frac{a+c}{b+d}\right)^2=\frac{a^2+c^2}{b^2+d^2}\)
Bài 2: Cho 3 số a,b,c\(\ne\)0, sao cho a\(^2\)=bc. CM:
a) \(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\) b)\(\left(\frac{c+2019a}{a+2019b}\right)^2=\frac{c}{b}\)
Bài 4: Cho a,b,c,d khác 0 sao cho b2=ac, c2=bd.CM: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
cho tỉ lệ thức a/b = c/d. chứng minh các tỉ lệ thức sau a^2-b^2 / ab = c^2-d^2/cd ,
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
CMR \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) và \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)