Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Kiều Trang
Xem chi tiết
Đặngg Quangg Anhh
Xem chi tiết
HD Film
22 tháng 7 2020 lúc 20:35

Ta có: \(\hept{\begin{cases}a>c+d\\b>c+d\end{cases}\Leftrightarrow\hept{\begin{cases}a-c>d\\b-d>c\end{cases}\Rightarrow}\left(a-c\right)\left(b-d\right)>cd\Leftrightarrow ab-bc-ad+cd>cd}\Leftrightarrow ab>ad+bc\)

Khách vãng lai đã xóa
Hi Mn
Xem chi tiết
Phía sau một cô gái
31 tháng 12 2022 lúc 21:50

Theo đề, ta có:

\(\left\{{}\begin{matrix}a\ge c+d\\b\ge c+d\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a-c\ge d\ge0\\b-d\ge c\ge0\end{matrix}\right.\) 

\(\Rightarrow\left(a-c\right)\left(b-d\right)\ge cd\)

\(\Leftrightarrow ab-bc-ad+cd\ge cd\)

\(\Leftrightarrow\) \(ab\ge ad+bc\left(đpcm\right)\)

 

Nguyễn Bảo Minh
Xem chi tiết
nguyễn thú hậu
Xem chi tiết
sssss
Xem chi tiết
thanh tam tran
Xem chi tiết
Nguyễn Phạm Bá Sơn
Xem chi tiết
Darlingg🥝
3 tháng 1 2020 lúc 15:22

Ta có:

\(c+d=4\)

\(\Rightarrow\left(c+d\right)^2=4^2\)

\(\Rightarrow c^2+2cd+d^2=16\)

\(\Rightarrow4a^2+b^2+c^2+2cd+d^2=2+16=18\left(1\right)\)

Áp dụng bất đẳng thức Cauchy ta có:

\(4a^2+c^2\ge2.2a.c=4ac\)

\(b^2+d^2\ge2bd\)

\(\Rightarrow4a^2+b^2+c^2+d^2\ge4ac+2bd\)

\(\Rightarrow4a^2+b^2+c^2+2cd+d^2\ge4ac+2bd+2cd\)

\(\Rightarrow18\ge4ac+2bd+2cd\left(theo\left(1\right)\right)\)

\(\Rightarrow18\ge2\left(2ac+bd+cd\right)\)

\(\Rightarrow9\ge2ac+bd+cd\)

\(\Rightarrow2ac+bd+cd\le9\)

\(\Rightarrow A_{max}=9\Leftrightarrow2a=c;b=d\)

Để max đúng 

Khách vãng lai đã xóa
Haise Nagasaki
4 tháng 10 2020 lúc 19:50

BẠN LÀM SAI RỒI phải tìm rõ cả a,b,c,d 

Nếu ko lm sao có dấu bằng xảy ra

vì hệ pt 4a2+b2=2 c=d

              c+d=4; 2a=b

vô nghiệm

Khách vãng lai đã xóa
Hà Thu Nguyễn
Xem chi tiết
Học Giỏi Đẹp Trai
27 tháng 11 2016 lúc 18:56

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=> a=bk ; c=dk

Suy ra:

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

Hoàng Thị Ngọc Anh
26 tháng 11 2016 lúc 22:37

Đặt a/b = c/d = k

=> a = bk; c = dk

Thay vào đk đề bài ta đc:

(bk)2 + b2/ (dk)2 + d2 ​ = b2 (k2 + 1)/d2(k2 + 1) = b/d (2)

ab/cd = bk.b/dk.d = b2.k/d2.k = b2/d2 = b/d (1)

Từ (1) và (2) suy ra a2 + b2/c2 + d2 = ab/cd → ĐPCM.

Nam Nam
26 tháng 11 2016 lúc 22:44

\(\frac{a}{b}\)=\(\frac{c}{d}\) =>\(\frac{a.a}{b.b}\) =\(\frac{c.c}{d.d}\) =\(\frac{a^2}{b^2}\) =\(\frac{c^2}{d^2}\) =>\(\frac{a^2}{c^2}\) =\(\frac{b^2}{d^2}\) áp dụng tính chất dãy tỉ số bằng nhau=>\(\frac{a^2}{c^2}\) =\(\frac{b^2}{d^2}\) =\(\frac{a^2+b^2}{c^2+d^2}\)