Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vương Thiên Nhi
Xem chi tiết
Phạm Lan Hương
15 tháng 11 2019 lúc 22:48
https://i.imgur.com/HEBnZ8f.jpg
Khách vãng lai đã xóa
Phạm Lan Hương
15 tháng 11 2019 lúc 22:49
https://i.imgur.com/4JUKzvG.jpg
Khách vãng lai đã xóa
Trang-g Seola-a
Xem chi tiết
cherry moon
Xem chi tiết
Quang Huy Điền
Xem chi tiết
Ngu Người
Xem chi tiết
Trần Đức Thắng
9 tháng 9 2015 lúc 22:14

ĐK : tự làm :

Đặt \(\sqrt{2x+3x-\sqrt{x+2}}=a;\sqrt{2x+4+\sqrt{x+2}}=b\)

TA có : \(b^2-a^2=1+2\sqrt{x+2}=a+b\)

=> b - a = 1 => b = 1 + a 

=> \(\sqrt{2x+4+\sqrt{x+2}}=1+\sqrt{2x+3-\sqrt{x+2}}\)

=> \(2x+4+\sqrt{x+2}=1+2x+3-\sqrt{x+2}+2\sqrt{2x+3-\sqrt{x+2}}\)

=> \(2\sqrt{x+2}=2\sqrt{2x+3-\sqrt{x+2}}\)

=> \(x+2=2x+3-\sqrt{x+2}\)

=> \(\sqrt{x+2}=x+1\)

Trần Đức Thắng
Xem chi tiết
Anh Mai
8 tháng 12 2015 lúc 22:42

mik mới học lớp 8 thôi sorry nha

ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 11 2021 lúc 15:23

\(ĐK:-5\le x\le3\)

Đặt \(\sqrt{x+5}+\sqrt{3-x}=t\ge0\Leftrightarrow t^2-8=2\sqrt{15-2x-x^2}\), PTTT:

\(t-t^2+8-2=0\\ \Leftrightarrow t^2-t-6=0\\ \Leftrightarrow t=3\left(t\ge0\right)\\ \Leftrightarrow2\sqrt{15-2x-x^2}=3^2-8=1\\ \Leftrightarrow60-8x-4x^2=1\\ \Leftrightarrow4x^2+8x-59=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+3\sqrt{7}}{2}\left(tm\right)\\x=\dfrac{-2-3\sqrt{7}}{2}\left(tm\right)\end{matrix}\right.\)

Vậy nghiệm pt là ...

Nhóc Cô Đơn
Xem chi tiết
Đào Trần Tuấn Anh
3 tháng 9 2019 lúc 17:26

Trả lời :

Con a giai pt vế trái rồi nhân căn bình phương cả 2 vế

Con b cũng giải pt vế phải chuyển vế rồi bình phương cả 2 vế

Chắc vậy

k bt 

Nguyễn Thị Diễm Quỳnh
Xem chi tiết
Phương An
16 tháng 8 2017 lúc 19:41

\(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)

\(\Leftrightarrow\left(\sqrt{x^2-3x+2}-\sqrt{x-2}\right)-\left(\sqrt{x^2+2x-3}+\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\dfrac{\left(x^2-3x+2\right)-\left(x-2\right)}{\sqrt{x^2-3x+2}+\sqrt{x-2}}-\dfrac{\left(x^2+2x-3\right)-\left(x+3\right)}{\sqrt{x^2+2x-3}-\sqrt{x+3}}=0\)

\(\Leftrightarrow\dfrac{\left(x-2\right)^2}{\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x-2}}-\dfrac{\left(x-2\right)\left(x+3\right)}{\sqrt{\left(x+3\right)\left(x-1\right)}-\sqrt{x+3}}=0\)

\(\Leftrightarrow\left(x-2\right)\left[\dfrac{x-2}{\sqrt{x-2}\left(\sqrt{x-1}+1\right)}-\dfrac{x+3}{\sqrt{x+3}\left(\sqrt{x-1}-1\right)}\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\right]=0\)

Pt \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}=0\) vô no

(vì \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}< \dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\forall x\ge2\Rightarrow VT< 0\))

=> x - 2 = 0

<=> x = 2 (nhận)

Phương An
16 tháng 8 2017 lúc 19:50

\(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)

\(\Leftrightarrow\dfrac{\left(4x+1\right)-\left(3x-2\right)}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)

\(\Leftrightarrow\dfrac{x+3}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)

\(\Leftrightarrow\left(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}\right)\left(x+3\right)=0\)

TH1:

x + 3 = 0

<=> x = - 3 (loại)

TH2:

\(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}=0\)

\(\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=5\)

\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)+\left(\sqrt{3x-2}-2\right)=0\)

\(\Leftrightarrow\dfrac{4x+1-9}{\sqrt{4x+1}+3}+\dfrac{3x-2-4}{\sqrt{3x-2}+2}=0\)

\(\Leftrightarrow\dfrac{4\left(x-2\right)}{\sqrt{4x+1}+3}+\dfrac{3\left(x-2\right)}{\sqrt{3x-2}+2}=0\)

\(\Leftrightarrow\left(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}\right)\left(x-2\right)=0\)

Pt \(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}>0\forall x\ge\dfrac{2}{3}\) => vô no

=> x - 2 = 0

<=> x = 2 (nhận)

~ ~ ~

Vậy x = 2

Phương An
16 tháng 8 2017 lúc 20:07

\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)

\(\Leftrightarrow\sqrt{2\left(x^2+4x+3\right)}-\left[\left(2x+2\right)-\sqrt{x^2-1}\right]=0\)

\(\Leftrightarrow\sqrt{2\left(x+3\right)\left(x+1\right)}-\dfrac{\left(4x^2+8x+4\right)-\left(x^2-1\right)}{\sqrt{x^2-1}+2x+2}=0\)

\(\Leftrightarrow\sqrt{2\left(x+3\right)\left(x+1\right)}-\dfrac{\left(x+1\right)\left(3x+5\right)}{\sqrt{\left(x-1\right)\left(x+1\right)}+2\left(x+1\right)}=0\)

\(\Leftrightarrow\sqrt{x+1}\left[2\sqrt{x+3}-\dfrac{\sqrt{x+1}\left(3x+5\right)}{\sqrt{x+1}\left(\sqrt{x-1}+2\sqrt{x+1}\right)}\right]=0\)

\(\Leftrightarrow\sqrt{x+1}\left[2\sqrt{x+3}-\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}\right]=0\)

TH1

x + 1 = 0

<=> x = - 1 (loại)

TH2

\(2\sqrt{x+3}-\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}=0\)

\(2\sqrt{x+3}=\dfrac{4x+12}{2\sqrt{x+3}}>\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}\forall x\ge1\)

=> VT > 0

=> vô no

~ ~ ~

Vậy pt vô no