cho x/2=y/9=z/4 và xyz-x2y=36. Tìm x,y,z
Help me a)4X=5Y=32 va 4y=32 ,x-y+z=36 ; b)x-1/2=y-2=3-z/3 và x+y+z=12 c) x/9=y/2=z/-2 và xyz=4
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm GTLN của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm GTLN của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
Tính GT biểu thức
C=xyz-(xy+yz+zx)+x+y+z-1 với x=9; y=10; z=11
D=x3-x2y-xy2+y3 với x=5,75; y=4,25
\(C=xyz+\left(xy+yz+xz\right)+x+y+z-1\)
Ta có ĐT tương đương
\(C=xyz+\left(xy+yz+xz\right)+x+y+z-1=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
Thay \(x=9\) ; \(y=10\) ; \(z=11\) vào BT có :
\(\left(9-1\right)\left(10-1\right)\left(11-1\right)=720\)
Vậy .........
C = xyz - xy - yz - xz + x + y +z- 1
= xy(z-1) - y(z-1) - x(z-1) + 1(z-1)
(xy-y-x+1)(z-1)
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm giá trị lớn nhất của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
x/2=y/9=z/5 và xyz=20. tìm x; y; z
uk lạ lắm thầy giáo giang r mà hỉu dc nhiu đó thâu
khó là chỗ k3 ó bạn
tìm xyz biết 3x-2y/4=2z-4x/3=4y-3z/2 và x+y+z=36
cho 2 ≤ x ≤ 3, 4 ≤ y ≤ 6, 4 ≤ z ≤ 6 và x + y + z = 12. Tìm GTLN của P = xyz
\(P=\dfrac{1}{12}.3x.2y.2x\le\dfrac{1}{12}.\dfrac{1}{27}\left(3x+2y+2z\right)^3\)
\(P\le\dfrac{1}{324}\left(x+24\right)^3\le\dfrac{1}{324}.\left(3+24\right)^3=\dfrac{243}{4}\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(3;\dfrac{9}{2};\dfrac{9}{2}\right)\)