1. Tìm x biết: 44+3x3=53
2.Tìm chữ số z,t để n=\(\overline{1z6t}\)
chia hết cho 5 và 9 dư 1
Tìm các chữ số x; y để A = \(\overline{\text{x183y}}\) chia cho 2; 5 và 9 đều dư 1.
Do A = \(\overline{\text{x183y}}\) chia cho 2 và 5 đều dư 1 nên y = 1. Ta có A = \(\overline{\text{x1831 }}\)
Vì A = \(\overline{\text{x1831}}\) chia cho 9 dư 1 \(\Rightarrow\) x1831 - 1\(⋮\)9 \(\Rightarrow\) x1830\(⋮\)9
\(\Leftrightarrow\) x + 1 + 8 + 3 + 0\(⋮\)9 \(\Leftrightarrow\) x + 3\(⋮\)9, mà x là chữ số nên x = 6
Vậy x = 6; y = 1
cho mình hỏi y=9 có đc ko
Bài 1. Tìm n thuộc N sao cho 1, n + 2 : hết cho n + 1 2, 2n + 7 : hết cho n + 1 3, 3n : hết cho 5 - 2n 4, 4n + 3 : hết cho 2n +6 5, 3n +1 : hết cho 11 - 2n
Bài 2. Tìm các chữ số x,y biết 1, 25x2y : hết cho 36 2, 2x85y : hết cho cả 2 , 3 , 5 3, 2x3y : hết cho cả 2 và 5 ; chia cho 9 dư 1 4, 7x5y1 : hết cho 3 và x - y = 4 5, 10xy5 : hết cho 45 6, 1xxx1 : hết cho 11 7, 52xy : hết cho 9 và 2, : cho 5 dư 4 8, 4x67y : hết cho 5 và 11 9, 1x7 + 1y5 : hết cho 9 và x - y = 6 10, 3x74y : hết cho 9 và x - y = 1 11, 20x20x20x : hết cho 7
Bài 3: CMR a, Trong 5 số tụ nhiên liên tiếp có 1 số : hết cho 5 b, ( 14n + 1) . ( 14n + 2 ) . ( 14n + 3 ) . ( 14n + 4 ) : hết cho 5 ( n thuộc N ) c, 88...8( n chữ số 8 ) - 9 + n : hết cho 9 d, 8n + 11...1( n chữ số 1 ) : hết cho 9 ( n thuộc N* ) e, 10n + 18n - 1 : hết cho 27
Bài 4. 1, Tìm các số tự nhiên chia cho 4 dư 1, còn chia cho 25 dư 3 2, Tìm các số tự nhiên chia cho 8 dư 3, còn chia cho 125 dư 12
giúp tui với
tui đang cần lắm đó bà con ơi
em mới lớp 5 seo anh gọi em là: BÀ CON
a/ \(\overline{53x8y}⋮2\) => y chẵn
\(\overline{53x8y}\) chia 5 dư 3 \(\Rightarrow y=\left\{3;8\right\}\) do y chẵn => y=8
\(\Rightarrow\overline{53x8y}=\overline{53x88}⋮9\Rightarrow5+3+x+8+8=x+24⋮9\Rightarrow x=3\)
b/ \(\overline{x184y}\) chia 2 có dư => y lẻ
\(\overline{x184y}⋮5\Rightarrow y=\left\{0;5\right\}\) do y lẻ => y=5
\(\Rightarrow\text{}\overline{x184y}=\overline{x1845}⋮9\Rightarrow x+1+8+4+5=x+18⋮9\Rightarrow x=\left\{0;9\right\}\)
Tìm chữ số a,b để
a)\(\overline{7a68b}\) khi chia cho 5 cũng như 9 đều dư 2
b) \(\overline{5a8b}\) chia hết cho 9 và a-b=1
a) Nếu 7a68b chia cho 5 dư 2 => b = 2 ; 7
7a68b chia cho 9 cũng dư 2
Ta có 2 trường hợp :
+ Nếu b = 2 thì tổng các chữ số là : 7 + 6 + 8 + 2 = 23
Mà 29 chia cho 9 dư 2 => a = 29 - 23 = 6
+ Nếu b = 7 thì tổng các chữ số là : 7 + 6 + 8 + 7 = 28
Mà 29 chia cho 9 dư 2 => a = 29 - 28 = 1
=> a = 6, 1 ; b = 2 , 7
b) 5a8b chia hết cho 9 và a - b = 1
Tổng các chữ số là : 5 + 8 = 13
Mà 18 chia hết cho 9 => a + b = 18 - 13 = 5
Vì a - b = 1 => a > b
=> a = 3 ; b = 2
Tìm chữ số x, y để A = 56x3y
a) Chia hết cho cả 2; 3; 5; 9.
b) Chia hết cho 3 và 5.
c) Chia hết cho 45.
d) Chia hết cho 5 nhưng chia 9 dư 1
e) Chia cho 2; 5 và 9 đều dư 1.
Bài 1. Thay a; b bằng những chữ số thích hợp để số 4̅̅𝑎̅̅2̅̅𝑏̅ chia hết cho 2; 5 và 9 Bài 2. Tìm a, b thích hợp để số 20̅̅̅̅𝑎̅2̅̅𝑏̅ chia hết cho cả 9 và 25. Bài 3. Thay x, y bởi những chữ số thích hợp để số 3̅̅𝑥̅̅57̅̅̅𝑦̅ chia 2 dư 1, chia 5 dư 3 và chia hết cho 9. Bài 4. Tìm số nhỏ nhất có 3 chữ số chia cho 2 dư 1; chia cho 5 dư 4 và chia cho 9 dư 7. Bài 5. Số bút chì cô giáo có ít hơn 35 chiếc và nhiều hơn 20 chiếc. Khi đem số bút chì đó chia cho 5 hoặc chia cho 3 thì vừa hết. Hỏi lúc đầu, cô giáo có tất cả bao nhiêu chiếc bút chì? Bài 6. Trong một cuộc họp người ta xếp ghế thành 2 dãy, nếu mỗi ghế có 3 người ngồi thì số đại biểu ở 2 dãy bằng nhau. Nhưng nếu mỗi ghế có 5 người ngồi thì sẽ có 4 đại biểu ngồi riêng. Hãy tính số đại biểu tham gia cuộc họp, biết rằng số người dự họp là số lớn hơn 60 và nhỏ hơn 100
Bài 1:
Đặt \(X=\overline{4a2b}\)
X chia hết cho 2;5 nên X chia hết cho 10
=>X có chữ số tận cùng là 0
=>b=0
=>\(X=\overline{4a20}\)
X chia hết cho 9
=>\(\left(4+a+2+0\right)⋮9\)
=>\(\left(a+6\right)⋮9\)
=>a=3
vậy: X=4320
Bài 2:
Đặt \(A=\overline{20a2b}\)
A chia hết cho 25 mà A có tận cùng là \(\overline{2b}\)
nên b=5
=>\(A=\overline{20a25}\)
A chia hết cho 9
=>\(2+0+a+2+5⋮9\)
=>\(a+9⋮9\)
=>\(a⋮9\)
=>\(a\in\left\{0;9\right\}\)
Bài 3:
Đặt \(B=\overline{3x57y}\)
B chia 5 dư 3 nên B có tận cùng là 3 hoặc 8(1)
B chia 2 dư 1 nên B có tận cùng là số lẻ (2)
Từ (1),(2) suy ra B có tận cùng là 3
=>y=3
=>\(B=\overline{3x573}\)
B chia hết cho 9
=>\(3+x+5+7+3⋮9\)
=>\(x+18⋮9\)
=>\(x\in\left\{0;9\right\}\)
Tìm chữ số thích hợp ở dấu * để số:
a) \(\overline{13\text{*}}\) chia hết cho 5 và 9;
b) \(\overline{67\text{*}}\) chia hết cho 2 và 3.
Bài 1: Cho x = y + 2. Tìm các giá trị của các chữ số x, y, z để số 8105xyz chia cho 5 dư 3, chia cho 2 dư 1 và chia hết cho 3.
8105xyz chia 5 dư 3 nên z = {3; 8}
Do 8105xyz không chia hết cho 2 nên z=3 => 8105xyz = 8105xy3
8105xy3 chia hết cho 3 nên 8+1+5+x+y+3=17+(x+y) phải chia hết cho 3 nên
(x+y)=y+2+y=2(y+1)={1;4;10; 13; 16; 19}
Do 2(y+1) chẵn nên => 2(y+1)={4; 10; 16} => y={1; 4; 7} => x = {3; 6; 9}
TL
t i k cho mik đi mik làm cho bài này mik làm rồi
HOk tốt
Bài 1 :
a)
Ta có: 87ab ⋮ 9 ⇔ (8 + 7 + a + b) ⁝⋮ 9 ⇔ (15 + a + b) ⋮ 9
Suy ra: (a + b) ∈ {3; 12}
Vì a – b = 4 nên a + b > 3. Suy ra a + b = 12
Thay a = 4 + b vào a + b = 12, ta có:
b + (4 + b) = 12 ⇔ 2b = 12 – 4
⇔ 2b = 8 ⇔ b = 4
a = 4 + b = 4 + 4 = 8
Vậy ta có số: 8784.
b)
⇒ (7+a+5+b+1) chia hết cho 3
⇔ (13+a+b) chia hết cho 3
+ Vì a, b là chữ số, mà a-b=4
⇒ a,b ∈ (9;5) (8;4) (7;3) (6;2) (5;1) (4;0).
Thay vào biểu thức 7a5b1, ta được :
ĐA 1: a=9; b=5.
ĐA 2: a=6; b=2.
Bài 2 :