x+2x+3x+.....+20x=210
x^3y+2x^3y+3x^3y+.....+20x^3y
Giải các PT sau :
|2x-3x-5| = 5x + 5
| x^2 + 2x | = |x^2 - x - 2 |
| x^2 - 20x -9 | = | 3x^2 + 10x + 21 |
b: \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=x^2+2x\\x^2-x-2=-x^2-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x-2=0\\2x^2+x-2=0\end{matrix}\right.\)
hay \(x\in\left\{-\dfrac{2}{3};\dfrac{-1+\sqrt{17}}{4};\dfrac{-1-\sqrt{17}}{4}\right\}\)
c: \(\Leftrightarrow\left[{}\begin{matrix}3x^2+10x+21=x^2-20x-9\\3x^2+10x+21=-x^2+20x+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+30x+30=0\\4x^2-10x+12=0\end{matrix}\right.\Leftrightarrow x\in\left\{\dfrac{-15+\sqrt{165}}{2};\dfrac{-15-\sqrt{165}}{2}\right\}\)
Chứng minh biểu thức sau không phụ thuộc x:
S=(3-2x)3x-8+(2x+5)(3x-2)-20x
Giải:
\(S=\left(3-2x\right)3x-8+\left(2x+5\right)\left(3x-2\right)-20x\)
\(\Leftrightarrow S=9x-6x^2-8+6x^2+15x-4x-10-20x\)
\(\Leftrightarrow S=-8-10\)
\(\Leftrightarrow S=-18\)
Vậy ...
chứng minh giá trị k phụ thuộc vào biến
A=(3-2x)x3x-8+(2x+5)(3x-2)-20x
B=(3-5x)(2x+11)-(2x+3)(3x+7)
tìm x
2x(x-1)-x^2+6=0
(x+3)(x^2-3x+9)-x(x-2)(x+2)=15
Sửa đề bài 1 : k => x P/s : đề sai r :))
\(A=\left(3-2x\right)3x^2-8+\left(2x+5\right)\left(3x-2\right)-20x\)
\(=9x^2-6x^3-8+6x^2-4x+15x-10-20x=15x^2-6x^3-18-9x\)
Vậy biểu thức phụ thuộc biến x
\(B=\left(3-5x\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x+33-10x^2-55x-6x^2-14x-9x-21=-72x+12-16x^2\)
Vậy biểu thức phụ thuộc biến x
Bài 2 :
a, \(2x\left(x-1\right)-x^2+6=0\Leftrightarrow2x^2-2x-x^2+6=0\)
\(\Leftrightarrow x^2-2x+6=0\)( vô nghiệm )
b, \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow\left(x+3\right)\left(x-3\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow x^2-9-x\left(x^2-4\right)=15\Leftrightarrow x^2-9-x^3+12=15\)
\(\Leftrightarrow-x^3+x^2-12=0\Leftrightarrow x=2\)
- Giải phương trình ạ
\(\sqrt{4+20x}=3x+2\)
\( \sqrt{ 2x+5 } = x+1 \)
\(\sqrt{4+20x}=3x+2\left(x\ge-\dfrac{1}{5}\right)\\ \Leftrightarrow4+20x=9x^2+12x+4\\ \Leftrightarrow9x^2-8x=0\\ \Leftrightarrow x\left(9x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=\dfrac{8}{9}\left(N\right)\end{matrix}\right.\\ \sqrt{2x+5}=x+1\left(x\ge-\dfrac{5}{2}\right)\\ \Leftrightarrow2x+5=x^2+2x+1\\ \Leftrightarrow x^2-4=0\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(N\right)\\x=-2\left(N\right)\end{matrix}\right.\)
\(\sqrt{4+20x}=3x+2\\ \Leftrightarrow4+20x=\left(3x+2\right)^2\\ \Leftrightarrow4+20x=9x^2+12x+4\\ \Leftrightarrow-4-20x+9x^2+12x+4=0\\ \Leftrightarrow9x^2-8x=0\\ \Leftrightarrow x\left(9x-8\right)=0\\ \Leftrightarrow x=0hoặcx=\dfrac{8}{9}\)
\(\sqrt{2x+5}=x+1\\ \Leftrightarrow2x+5=\left(x+1\right)^2\\ \Leftrightarrow2x+5=x^2+2x+1\\ \Leftrightarrow x^2+2x+1-2x-5=0\\ \Leftrightarrow x^2-4=0\\ \Leftrightarrow x^2=4\\ \Leftrightarrow x=\pm2\)
a: Ta có: \(\sqrt{20x+4}=3x+2\)
\(\Leftrightarrow9x^2+12x+4=20x+4\)
\(\Leftrightarrow9x^2-8x=0\)
\(\Leftrightarrow x\left(9x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=\dfrac{8}{9}\left(nhận\right)\end{matrix}\right.\)
Bài 1: Tìm x, biết .
a. 5x( 12x + 7) - 3x ( 20x - 5) = -100
b. 5x( 2x - 7) + 2x ( 8 - 5x) = 5
a)\(60x^2+35x-60x^2+15x=100\)
35x+15x=100
50x=100 =>x=2
b)\(10x^2-35x+16x-10x^2=5\)
-35x+16x=5
-19x=5 =>x=-5/19
a)60x2+35x−60x2+15x=10060x2+35x−60x2+15x=100
35x+15x=100
50x=100
=>x=2
b)10x2−35x+16x−10x2=510x2−35x+16x−10x2=5
-35x+16x=5
-19x=5
=>x=-5/19
Tính giá trị các biểu thức sau:
D= \(4x^2-2x+3x\left(x-5\right)\)tại \(x=-1\)
E= \(x^{10}-2020x^9+2020x^8-2020x^7+...+2020x^2-2020x\) tại \(x=2019\)
F= \(x^{10}+20x^9+20x^8+...+20x^2+20x\) tại \(x=19\)
Mấy bạn giúp mk vs ai nhanh mk sẽ vote ạ các bạn làm đầy đủ cho mk nha mk cảm ơn nhìu :33
\(D=4x^2-2x+3x\left(x-5\right)=4x^2-2x+3x^2-15x=7x^2-17x=7\left(-1\right)^2-17\left(-1\right)=24\)
\(E=x^{10}-2020x^9+2020x^8-2020x^7+...+2020x^2-2020x=x^9\left(x-2019\right)-x^8\left(x-2019\right)+x^7\left(x-2019\right)-...-x^2\left(x-2019\right)+x\left(x-2019\right)-x=x^9\left(2019-2019\right)-...+x\left(2019-2019\right)-2019=-2019\)
rút gọn rồi tính giá trị biểu thức sau
a) (3x-2)2+2x(3x-2)x(3x+2)+(3x+2)2tại x =\(\dfrac{-1}{3}\)
b) (x+y-7)2 -2x(x+y-7)x(y-6)+(y+6) tại x=101
c) 4x2 -20x+27 tại x = 52,5
a) Ta có: \(\left(3x-2\right)^2+2\left(3x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)
\(=\left(3x-2+3x+2\right)^2\)
\(=36x^2\)(1)
Thay \(x=-\dfrac{1}{3}\) vào biểu thức (1), ta được:
\(36\cdot\left(-\dfrac{1}{3}\right)^2=36\cdot\dfrac{1}{9}=4\)
b) Sửa đề: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
Ta có: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
\(=\left(x+y-7-y+6\right)^2\)
\(=\left(x-1\right)^2=100^2=10000\)
a)\(\sqrt{X^2-3X+2}=3-X\)
b)\(\sqrt{4x^2-20x+25}+2x=5\)
c)\(\sqrt{\left(3-2x\right)^2}=4\)
a
ĐK:
\(3-x\ge0\\ \Leftrightarrow x\le3\)
\(\sqrt{x^2-3x+2}=3-x\\ \Leftrightarrow x^2-3x+2=\left(3-x\right)^2=9-6x+x^2\\ \Leftrightarrow x^2-3x+2-9+6x-x^2=0\\ \Leftrightarrow3x=7\\ \Leftrightarrow x=\dfrac{7}{3}\left(nhận\right)\)
Thử lại: \(\sqrt{\left(\dfrac{7}{3}\right)^2-3.\dfrac{7}{3}+2}=\dfrac{2}{3}>0\)
Vậy phương trình có nghiệm duy nhất \(x=\dfrac{7}{3}\)
b
\(\sqrt{4x^2-20x+25}=\sqrt{\left(2x\right)^2-2.2x.5+5^2}=\sqrt{\left(2x-5\right)^2}=\left|2x-5\right|\)
Phương trình trở thành:
\(\left|2x-5\right|+2x=5\) (1)
Với \(x< \dfrac{5}{2}\) thì (1) \(\Leftrightarrow5-2x+2x=5\Leftrightarrow5=5\)
=> Với \(x< \dfrac{5}{2}\) thì phương trình có nghiệm với mọi x \(< \dfrac{5}{2}\) (I)
Với \(x\ge\dfrac{5}{2}\) thì (1)
\(\Leftrightarrow2x-5+2x=5\\ \Leftrightarrow2x-5+2x-5=0\\ \Leftrightarrow4x=10\\ \Leftrightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\left(nhận\right)\left(II\right)\)
Từ (I), (II) kết luận phương trình có nghiệm với mọi \(x\le\dfrac{5}{2}\)
c
\(\Leftrightarrow\left|3-2x\right|=4\) (1)
Nếu \(x\le\dfrac{3}{2}\) thì (1)
\(\Leftrightarrow3-2x=4\\ \Leftrightarrow2x=-1\\ \Leftrightarrow x=-\dfrac{1}{2}\left(nhận\right)\)
Nếu \(x>\dfrac{3}{2}\) thì (1)
\(\Leftrightarrow2x-3=4\\ \Leftrightarrow2x=7\\ \Leftrightarrow x=\dfrac{7}{2}\left(nhận\right)\)
Vậy phương trình có 2 nghiệm \(S=\left\{-\dfrac{1}{2};\dfrac{7}{2}\right\}\)
a: =>x^2-3x+2=x^2-6x+9 và x<=3
=>3x=7 và x<=3
=>x=7/3(loại)
b: =>|2x-5|=5-2x
=>2x-5<=0
=>x<=5/2
c: =>|2x-3|=4
=>2x-3=4 hoặc 2x-3=-4
=>x=-1/2 hoặc x=7/2