Chứng minh 2+2^2+2^3+2^4+.......+2^59+2^60 chia hết cho 6
Chứng minh A = 2+2^2+2^3+2^4+.......+2^59+2^60 chia hết cho 6
=(2+22)+(23+24+25)+...+(258+259+260)
=6+23(2+4)+...+258(2+4)
=6+23.6+...+258.6
=6(1+23+...+258)
=> Tổng đó chia hết cho 6
Đặt A = 2 + 22 + 23 + 24 + ... + 258 + 259
A = 2.(1 + 2 + 22 + 23 + ... + 258 + 259)
Vì 2 chia hết cho 2 => A chia hết cho 2
A = 2 + 22 + 23 + 24 + ... + 259 + 260
A = (2 + 22) + (23 + 24) + ... + (259 + 260)
A = 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)
A = 2.3 + 23.3 + ... + 259.3
A = 3.(2 + 23 + ... + 259)
Vì 3 chia hết cho 3 => A chia hết cho 3
Vì A chia hết cho 2 và 3 mà ƯCLN(2,3) = 1 => A chia hết cho 2.3 = 6
=> A chia hết cho 6
=> 2 + 22 + 23 + 24 + ... + 259 + 260 chia hết cho 6
Chứng minh A = 2+2^2+2^3+2^4+.......+2^59+2^60 chia hết cho 6
A = 2 + 22 + 23 + 24 + ... + 259 + 260
A = (2 + 22) + (23 + 24) + ... + (259 + 260)
A = 6 + 22.(2 + 22) + ... + 258.(2 + 22)
A = 6 + 22.6 + ... + 258.6
A = 6.(1 + 22 + ...+ 258)
Vì 6 chia hết cho 6 => 6.(1 + 22 + ... + 258) chia hết cho 6 => A chia hết cho 6
Bạn bị mồ côi à?
Chứng minh A = 2+2^2+2^3+2^4+.......+2^59+2^60 chia hết cho 6
+) A bằng tổng các lũy thừa của 2 => A chia hết cho 2
+) A = (2 + 22) + (23 + 24) + ...+ (259 + 260) = 2.(1 + 2) + 23.(1 + 2) + ...+ 259.(1 + 2)
A = 2.3 + 23.3 + ...+ 259.3 = (2 + 23 + ...+ 259) .3 => A chia hết cho 3
A vừa chia hết cho 2 , vừa chia hết cho 3 => A chia hết cho BCNN(2;3) = 6
Vậy...
Nếu muốn làm nhanh hơn thì nhóm 2 số lại với nhau
Bài 11. Chứng minh rằng: 2 2 2 2 2 2 + + + ++ + 2 3 4 59 60 chia hết cho 3
Chứng minh rằng tổng 2+2^2+2^3+2^4+...+2^59+2^60 chia hết cho 3
2+2^2+...+2^60
=(2+2^2).1+(2+2^2).2^2+...+(2+2^2).2^58
=6.(1+2^2+...+2^58)
=3.2(1+2^2+...+2^58)chia hết cho 3
Cho A= 2+2^2+2^3+2^4+...+2^59+2^60. Chứng minh A chia hết cho 7
A=2+2^2+2^3+...+2^59+2^60(có 60 số hạng)
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)[có 20 nhóm]
A=14*1+2^3*(2+2^2+2^3)+...+2^57*(2+2^2+2^3)
A=14*1+2^3*14+...+2^57*14
A=14*(1+2^3+...+2^57)
A=7*2*(1+2^3+...+2^57) chia hết cho 7(tick nha)
Chứng minh rằng: 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +......+ 2 mũ 59 + 2 mũ 60 chia hết cho 3.
\(2+2^2+2^3+2^4+...+2^{59}+2^{60}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{59}\right)\\ =3\left(2+2^3+...+2^{59}\right)⋮3\)
Chứng minh 2+2^2+2^3+2^4+.......+2^59+2^60 chia hết cho 3; 7; 15
A=(2+2^2)+...+(2^59+2^60)
=2(1+2)+...+2^59(1+2)
=3(2+2^3+...+2^59)
nên A chia hết cho 3.
A= (2+2^2+2^3)+...+(2^58+2^59+2^60)
=2(1+2+2^2)+...+2^58(1+2+2^2)
=7(2+2^4+..+2^58)
nên A chia hết cho 7
A= (2+2^2+2^3+2^4)+....+(2^57+2^58+2^59+2^6...
=2(1+2+2^2+2^3)+....+2^57(1+2+2^2+2^3)...
=15(2+2^5+...+2^57)
nên A chia hết cho 15
Chứng minh rằng A = 2 + 2 ^ 2 + 2 ^ 3 +2 ^4 +.........+2 ^ 58 +2 ^ 59 +2 ^60
a) Chia hết cho 3
b) Chia hết cho 7
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.