Cho đường tròn (O) và tiếp tuyến AB (B là tiếp điểm), Lấy điểm C thuộc đường tròn (O) sao cho AB=AC. Chứng minh AC là tiếp tuyến của đường tròn (O)
Từ điểm A ngoài đường tròn (O;R) vé tiếp tuyến AB với đường tròn (B là tiếp điểm). Lấy C trên đường trong sao cho AB = AC. a) Chứng minh AC là tiếp tuyến của O.
b) Lấy D thuộc AC, đườn thẳng qua C và vuông góc với OD tại I, cắt (O) tại E (E khác C). Chứng minh DE là tiếp tuyến của đường tròn (O;R).
Từ điểm A nằm bên ngoài đường tròn tâm O, kẻ tiếp tuyến AB với (O)( B là tiếp điểm). Lấy điểm
C thuộc đường tròn (O) sao cho AC=AB, Vẽ đường kính BE.
a) Chứng minh AC vuông góc với OC. Từ đó suy ra AC là tiếp tuyến của (O).
b) Chứng minh OA//CE.
c) Gọi H là hình chiếu vuông góc của C trên BE và M là giao điểm của AE và CH. Chứng minh M là
trung điểm của CH.
a: Xét ΔOBA và ΔOCA có
OB=OC
OA chung
BA=CA
Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}\)
\(\Leftrightarrow\widehat{OCA}=90^0\)
hay AC\(\perp\)OC tại C
Xét (O) có
OC là bán kính
AC\(\perp\)OC tại C
Do đó: AC là tiếp tuyến của (O)
b: Ta có: OB=OC
nên O nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2)suy ra OA là đường trung trực của BC
hay OA\(\perp\)BC(3)
Xét (O) có
ΔBCE nội tiếp đường tròn
BE là đường kính
Do đó: ΔBCE vuông tại C
hay BC\(\perp\)CE(4)
Từ (3) và (4) suy ra CE//OA
Cho đường tròn (O; R) và điểm nằm ngoài đường tròn sao cho OA =2R. Vẽ tiếp tuyến AB, trên đường tròn (O) lấy điểm sao cho AB=AC. Chứng minh
a/ AC là tiếp tuyến của đường tròn tâm O
b/ OA vuông BC
c/ Tính AB, AC và bán kính đường tròn ngoại tiếp tam giác ABC theo R
Cho đường tròn (O;R),đường kính AB . Qua điểm A kẻ tiếp tuyến Ax đến đường tròn (O) . Trên tia Ax lấy điểm C sao cho AC > R . Từ điểm C kẻ tiếp tuyến CM với đường tròn (O) (M là tiếp điểm)
a) Chứng minh 4 điểm A,C,O,M cùng thuộc một đường tròn
b) Chứng minh rằng MB//OC
c) Gọi K là giao điểm thứ hai của BC với đường tròn (O) . Chứng minh rằng BC.BK`=4R^2`
a: Xét tứ giác OACM có
\(\widehat{OAC}+\widehat{OMC}=90^0+90^0=180^0\)
=>OACM là tứ giác nội tiếp
=>O,A,C,M cùng thuộc một đường tròn
b: Xét (O) có
CA,CM là tiếp tuyến
Do đó: CA=CM
=>C nằm trên đường trung trực của AM(1)
OA=OM
=>O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra OC là đường trung trực của AM
=>OC\(\perp\)AM
Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>AM\(\perp\)MB tại M
Ta có: AM\(\perp\)MB
AM\(\perp\)OC
Do đó: OC//MB
c: Xét (O) có
ΔAKB nội tiếp
AB là đường kính
Do đó: ΔAKB vuông tại K
=>KB\(\perp\)KA tại K
=>AK\(\perp\)BC tại K
Xét ΔABC vuông tại A có AK là đường cao
nên \(BK\cdot BC=BA^2=\left(2R\right)^2=4R^2\)
Cho (O) đường kính AB lấy điểm C thuộc đường tròn sao cho AC = AO kẻ CH thuộc AB O thuộc BC tiếp tuyến tại C cắt OD ở E
a) Chứng minh 4 điểm C,H,O,D cùng thuộc một đường tròn
b) chứng minh OD ,OE=AH ,AB
c) Chứng minh AB là tiếp tuyến của đường tròn (O)
Cho đường tròn (O;R). Từ một điểm A bên ngoài đường tròn kẻ tiếp tuyến AB với đường tròn (B là
tiếp điểm). Trên đường tròn lấy điểm C ( C khác B) sao cho AB=AC. Chứng minh AC là tiếp tuyến
của đường tròn (O;R).
Xét ΔOBA và ΔOCA có
OB=OC
AB=AC
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}=90^0\)
=>AC là tiếp tuyến của (O;R)
Cho đường tròn tâm O, đường kính BC = 2R. Lấy điểm A thuộc đường tròn sao cho AC = R . Vẽ OE vuông góc với AB tại E. Tiếp tuyến tại B của đường tròn (O) cắt đường thẳng OE tại điểm M.
1/ Chứng minh MA là tiếp tuyến của đường tròn (O).
2/ Chứng minh bốn điểm A, O, B, M cùng thuộc một đường tròn. Xác định tâm và tính bán kính của đường tròn đó theo R.
1: Xét ΔMBO và ΔMAO có
OB=OA
\(\widehat{BOM}=\widehat{AOM}\)
OM chung
Do đó: ΔMBO=ΔMAO
Suy ra: \(\widehat{MBO}=\widehat{MAO}=90^0\)
hay MA là tiếp tuyến của (O)
2: Xét tứ giác AOBM có
\(\widehat{MAO}+\widehat{MBO}=180^0\)
nên AOBM là tứ giác nội tiếp
Cho đường tròn (O) và điểm A nằm ngoài đường tròn đó.Vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm).Kẻ BH vuông góc AO (H thuộc AO).Trên tia đối của HB lấy C sao cho HB=HC.CMR:
1)C thuộc đường tròn (O) và AC là tiếp tuyến của (O)
2)Vẽ cát tuyến AMN với đường tròn (O) (AM<AN;tia AM nằm giữa 2 tia AO và AC).CM:AM.AN=AH.AO
3)Gọi I là trung điểm của MN.Tia CI cắt đường tròn (O) tại K.CM:BK//MN
1: Xét ΔOBC có
OH là đường cao
OH là đường trung tuyến
Do đó: ΔOCB cân tại O
hay C thuộc đường tròn(O)
Xét ΔOBA và ΔOCA có
OB=OC
AB=AC
OA chung
Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)
hay AC là tiếp tuyến của (O)
2: Xét ΔABM và ΔANB có
\(\widehat{ABM}=\widehat{ANB}\)
\(\widehat{BAM}\) chung
Do đó: ΔABM\(\sim\)ΔANB
Suy ra: AB/AN=AM/AB
hay \(AB^2=AM\cdot AN\left(1\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AN=AH\cdot AO\)
Bài 7: Cho đường tròn tâm O, đường kính BC = 2R. Lấy điểm A thuộc đường tròn sao cho AC = R . Vẽ OE vuông góc với AB tại E. Tiếp tuyến tại B của đường tròn (O) cắt đường thẳng OE tại điểm M. 1/ Chứng minh MA là tiếp tuyến của đường tròn (O). 2/ Chứng minh bốn điểm A, O, B, M cùng thuộc một đường tròn. Xác định tâm và tính bán kính của đường tròn đó theo R.
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD