Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phù Thị Lan Tiên
Xem chi tiết
cr conan
Xem chi tiết
Nguyễn Đặng Thu Trúc
Xem chi tiết
Trang
Xem chi tiết
Matsuda Jinpei
1 tháng 2 2016 lúc 0:37

oh on muộn thế

Thanh Trần Là Tớ
1 tháng 2 2016 lúc 0:39

sao pạn ko vẽ hình ra cho dễ lm

Trang
1 tháng 2 2016 lúc 0:49

ko aj on hêt

le quang huy
Xem chi tiết
le quang huy
Xem chi tiết
Uyên Dao
Xem chi tiết
Nguyễn Ngọc Mai
28 tháng 4 2020 lúc 8:53

1)Xét tam giác OAB và tam giác OA'B' có:

       OA=OA'

       góc AOB=góc A'OB'(đối đỉnh)

       OB=OB'

=>tam giác OAB=tam giác OA'B'(c.g.c)

=>AB=A'B'(đpcm)

và góc ABO=góc A'B'O

=>AB//A'B'(so le trong) (đpcm)

Chúc bạn học tốt

Khách vãng lai đã xóa
Nguyễn Ngọc Mai
28 tháng 4 2020 lúc 9:09

2) +)Xét tam giác OAC và tam giác OA'C' có:

       OC=OC'

       góc OAC=góc OA'C'(đối đỉnh)

       OA=OA'

=>tam giác OAC= tam giác OA'C'( c.g.c)

=>AC=A'C'

+) Xét tam giác BOC và tam giác B'OC' có:

    OB=OB'

    góc BOC=góc B'OC'(đối đỉnh)

    OC=OC'

=>tam giác BOC=tam giác B'OC'(c.g.c)

=>BC=B'C'

+)Xét tam giác ABC và tam giác A'B'C' có:

   AB=A'B'

   AC=A'C'

   BC=B'C'

=>tam giác ABC=tam giác A'B'C'(c.c.c)  (đpcm)

Khách vãng lai đã xóa
khucdannhi
Xem chi tiết
Nam Trần
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
14 tháng 9 2023 lúc 16:47

a) Ta có: \(\frac{{A'B'}}{{AB}} = \frac{2}{6} = \frac{1}{3},\frac{{A'C'}}{{AC}} = \frac{3}{9} = \frac{1}{3},\frac{{B'C'}}{{BC}} = \frac{4}{{12}} = \frac{1}{3}\). Do đó, các tỉ số trên bằng nhau.

b) Ta có: \(\frac{{AM}}{{AB}} = \frac{2}{6} = \frac{1}{3};\frac{{AN}}{{AC}} = \frac{3}{9} = \frac{1}{3}\)

Vì \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} \Rightarrow MN//BC\) (định lí Thales đảo)

Vì \(MN//BC \Rightarrow \frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\) (Hệ quả của định lí Thales)

Do đó, \(\frac{{MN}}{{BC}} = \frac{1}{3} \Leftrightarrow \frac{{MN}}{{12}} = \frac{1}{3} \Rightarrow MN = \frac{{12.1}}{3} = 4\).

Vậy \(MN = 4cm\).

c) Vì \(MN//BC \Rightarrow \Delta ABC\backsim\Delta AMN\) (định lí)(1)

Xét tam giác \(AMN\) và tam giác \(A'B'C'\) ta có:

\(AM = A'B' = 2cm;AN = A'C' = 2cm;MN = B'C' = 4cm\)

Do đó, \(\Delta AMN = \Delta A'B'C'\) (c.c.c)

Vì  \(\Delta AMN = \Delta A'B'C'\) nên \(\Delta AMN\backsim\Delta A'B'C'\) (2)

Từ (1) và (2) suy ra, \(\Delta ABC\backsim\Delta A'B'C'\).