cho a,b,c thỏa man a+b+c=2 Tìm GTLN của P=2ab+bc+ca
Cho các số dương \(a,b,c\)thỏa mãn \(a+b+c=3\)tìm GTLN của biểu thức: \(P=\frac{a^3}{3a-ab-ca+2bc}+\frac{b^3}{3b-bc-ab+2ca}+\frac{c^3}{3c-ca-bc+2ab}+3abc\)
Sử dụng giả thiết a + b + c = 3, ta được: \(\frac{a^3}{3a-ab-ca+2bc}=\frac{a^3}{\left(a+b+c\right)a-ab-ca+2bc}\)\(=\frac{a^3}{a^2+2bc}\)
Tương tự ta có \(\frac{b^3}{3b-bc-ab+2ca}=\frac{b^3}{b^2+2ca}\); \(\frac{c^3}{3c-ca-bc+2ab}=\frac{c^3}{c^2+2ab}\)
Khi đó thì \(P=\frac{a^3}{a^2+2bc}+\frac{b^3}{b^2+2ca}+\frac{c^3}{c^2+2ab}+3abc\)\(=\left(a+b+c\right)-\frac{2abc}{a^2+2bc}-\frac{2abc}{b^2+2ca}-\frac{2abc}{c^2+2ab}+3abc\)\(=3+abc\left[3-2\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\right)\right]\)\(\le3+abc\left[3-2.\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\right]\)(Theo BĐT Bunyakovsky dạng phân thức)\(=3+abc\left[3-2.\frac{9}{\left(a+b+c\right)^2}\right]\le3+\left(\frac{a+b+c}{3}\right)^3=4\)
Đẳng thức xảy ra khi a = b = c = 1
Cho a,b,c thỏa mãn a+b+c=2. Tìm max của P=2ab+bc+ca
GIÚP T VỚI ^_^!
Cho a,b,c thỏa mãn: a+b+c=2. Tìm Max P = 2ab+bc+ca
Thay \(c=2-\left(a+b\right)\Leftrightarrow P=2ab+c\left(a+b\right)=2ab+\left(a+b\right)\left[2-\left(a+b\right)\right]\)
\(=2ab+2\left(a+b\right)-a^2-b^2-2ab=2\left(a+b\right)-a^2-b^2=2-\left(a-1\right)^2-\left(b-1\right)^2\)
Mà \(\hept{\begin{cases}\left(a-1\right)^2\\\left(b-1\right)^2\end{cases}\ge0\forall a,b\inℝ\Rightarrow P=2-\left(a-1\right)^2-\left(b-1\right)^2\le2}\)
Dấu ''='' xảy ra \(\Leftrightarrow\) \(a=b=1\rightarrow c=0\)
Cho các số dương a,b,c thỏa mãn a^2+b^2+c^2=64.Tìm GTLN của P=ab+bc+ca+a+b+c
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right).\)(áp dụng bất đẳng thức bunhiacopxki)
\(\Leftrightarrow\left(a+b+c\right)^2\le3.64\Rightarrow\left(a+b+c\right)\le8\sqrt{3}\)
Lại có \(\left(ab+bc+ac\right)^2\le\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\)(bất đẳng thức bunhiacopxki)
\(\Leftrightarrow ab+bc+ac\le a^2+b^2+c^2=64\)
Khi đó \(P=ab+bc+ca+a+b+c\le64+8\sqrt{3}\)
Dấu = xảy ra khi \(\hept{\begin{cases}a=b=c\\a^2+b^2+c^2=64\end{cases}\Leftrightarrow}a=b=c=\frac{8\sqrt{3}}{3}\)
cho a b c là các số dương thỏa mãn a^2+b^2+c^2=27 tìm GTLN của P= ab+bc+ca
Lời giải:
Áp dụng BĐT Cô-si:
$a^2+b^2\geq 2\sqrt{a^2b^2}=2|ab|\geq 2ab$
$b^2+c^2\geq 2bc$
$c^2+a^2\geq 2ac$
Cộng theo vế các BĐT trên ta được:
$2(a^2+b^2+c^2)\geq 2(ab+bc+ac)$
$\Rightarrow ab+bc+ac\leq a^2+b^2+c^2=27$
Vậy GTLN của $P$ là $27$
Cho a,b,c thực dương thỏa mãn a^3/(a^2+ab+b^2)+b^3/(b^2+bc+c^2)+c^3/(c^2+ca+a^)=1.Tìm GTLN của BT:S=a+b+c
1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:
\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)
2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
4,Cho a,b,c>0.
Tìm GTLN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)
ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Đặt: \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)
=> \(P=\frac{xy}{z^2+3xy}+\frac{yz}{x^2+3yz}+\frac{zx}{y^2+3zx}\)
=> \(3P=\frac{3xy}{z^2+3xy}+\frac{3yz}{x^2+3yz}+\frac{3zx}{y^2+3zx}=1-\frac{z^2}{z^2+3xy}+1-\frac{x^2}{x^2+3yz}+1-\frac{y^2}{y^2+3zx}\)
Ta sẽ CM: \(3P\le\frac{9}{4}\)<=> Cần CM: \(\frac{x^2}{x^2+3yz}+\frac{y^2}{y^2+3zx}+\frac{z^2}{z^2+3xy}\ge\frac{3}{4}\)
Có: \(VT\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)
Ta sẽ CM: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{3}{4}\)
<=> \(4\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)
<=> \(4\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)
<=> \(x^2+y^2+z^2\ge xy+yz+zx\)
Mà đây lại là 1 BĐT luôn đúng => \(3P\le\frac{9}{4}\)=> \(P\le\frac{3}{4}\)
Vậy P max \(=\frac{3}{4}\)<=> \(a=b=c\)
Cho a,b,c>0 thỏa mãn ab+bc+ca=1. Tìm GTLN của \(Q=\dfrac{2a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\)
\(Q=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}+\dfrac{b}{\sqrt{b^2+ab+bc+ca}}+\dfrac{c}{\sqrt{c^2+ab+bc+ca}}\)
\(=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\dfrac{2a}{a+b}.\dfrac{2a}{a+c}}+\sqrt{\dfrac{2b}{a+b}.\dfrac{b}{2\left(b+c\right)}}+\sqrt{\dfrac{2c}{a+c}.\dfrac{c}{2\left(b+c\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{2a}{a+b}+\dfrac{2a}{a+c}+\dfrac{2b}{a+b}+\dfrac{b}{2\left(b+c\right)}+\dfrac{2c}{a+c}+\dfrac{c}{2\left(b+c\right)}\right)\)
\(=\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{7}{\sqrt{15}};\dfrac{1}{\sqrt{15}};\dfrac{1}{\sqrt{15}}\right)\)
CHO a,b,c là các số thực dương thỏa mãn abc=1 . tìm GTLN của P =ab/a^4 +b^4+ab +bc/b^4+c^4+bc + ca/c^4+a^4+ca +2020
\(a^4+b^4+a^4+a^4\ge4\sqrt[4]{a^{12}b^4}=4a^3b\)
\(a^4+b^4+b^4+b^4\ge4\sqrt[4]{a^4b^{12}}=4ab^3\)
\(\Rightarrow4\left(a^4+b^4\right)\ge4\left(a^3b+ab^3\right)\Rightarrow a^4+b^4\ge a^3b+ab^3\)
\(F=\Sigma\frac{ab}{a^4+b^4+ab}\le\Sigma\frac{ab}{a^3b+ab^3+ab}=\Sigma\frac{1}{a^2+b^2+1}=\Sigma\frac{2}{2a^2+2b^2+2}\)
\(\le\Sigma\frac{1}{ab+a+b}\)
Đến đây bí :(