cho x,y,z>0 x^2+y^2+z^2+1/x^2+1/y^2+1/z^2=6 .tính A=x^2012+y^2013+z^2014
1.
a)Tính A= (a+b+c)^2 / a^2 + b^2 +c^3 với a/b=b/c=c/a và a+b+c khác 0
b) x.y^2.z^3 + x^2. y^3.z^4 + x^3.y^4.z^5+.....+x^2012.y^2013.z^2014.
Khi x=y=z=-1
Câu 1: Tìm x, y, z biết:
(3x-5)^2010+(y-1)^2012+(x-z)^2014=0
Câu 2: tìm x, y thuộc N biết:
116-y^2=7(x-2013)^2
Cho x,y,z thoả x/2012=y/2013=z/2014
C/m (x-z)3=8(x-y)2(y-z)
Cho x,y,z thỏa mãn đồng thời: \(3x-2y-2\sqrt{y+2012}+1=0\); \(3y-2z-2\sqrt{z-2013}+1=0\);\(3z-2x-2\sqrt{x-2}-2=0\)Tính \(C=\left(x-4\right)^{2016}+\left(y+2012\right)^{2017}+\left(z-2013\right)^{2008}\)
1.Cho x+y-z = a-b; x-y+z = b-c; -x+y+z = c-a
Chứng minh x+y+z = 0
2. a) Cho đa thức f(x) = \(x^{2015}-2000x^{2014}+2000x^{2013}-2000x^{2012}+...+2000x-1\)
Tính giá trị đa thức tại x = 1999
b) Cho đa thức f(x) = \(ax^2+bx+c\)
Chứng tỏ rằng: f(-2).f(3) ≤ 0 nếu 13a + b + 2c = 0
1. Tìm x, y, z biết:
( 3x- 5)2010 + ( y- 1)2012 +( x- z)2014= 0
2. Tìm x, y thuộc N
16- y2= 7( x- 2013)2
Shbh=a x h= 48 x (48 x \(\frac{1}{3}\) ) =768 (cm2 )
1. \(\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}=0\)
Vì \(\left(3x-5\right)^{2010}\ge0\forall x\); \(\left(y-1\right)^{2012}\ge0\forall y\); \(\left(x-z\right)^{2014}\ge0\forall x,z\)
\(\Rightarrow\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=5\\y=1\\x=z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1\\z=\frac{5}{3}\end{cases}}\)
Vậy \(x=z=\frac{5}{3}\)và \(y=1\)
Cho x, y, z thõa mãn đồng thời: \(3x-2y-2\sqrt{y+2012}+1=0;3y-2z-2\sqrt{z-2013}+1=0;3z-2x-z\sqrt{x-2}-2=0\)
Cộng vế với vế của 3 đẳng thức đã cho ta được:
\(x+y+z-2\sqrt{y+2012}-2\sqrt{z-2013}-2\sqrt{x-2}=0\)
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2012-2\sqrt{y+2012}+1\right)+\left(z-2013+2\sqrt{z-2013}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2012}-1\right)^2+\left(\sqrt{z-2013}-1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(\sqrt{x-2}-1\right)^2=0\\\left(\sqrt{y+2012}-1\right)^2=0\\\left(\sqrt{z-2013}-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y+2012}-1=0\\\sqrt{z-2013}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y+2012}=1\\\sqrt{z-2013}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2011\\z=2014\end{matrix}\right.\)
Thay vào C ta được:
C = (3 - 4)2016 + (-2011 + 2012)2017 + (2014 - 2013)2018
C = 1 + 1 + 1 = 3
THÊM
Cho x, y, z thõa mãn đồng thời: \(3x-2y-2\sqrt{y+2012}+1=0;3y-2z-2\sqrt{z-2013}+1=0;3z-2x-2\sqrt{x-2-2=0.}\)Tính \(C=\left(x-4\right)^{2016}+\left(y+2012\right)^{2017}+\left(z-2013\right)^{2018}\)cho 3 số x ,y ,z #0 thõa mãn 1/x + 1/y +1/z=0 . tính : P =(xy/z^2 + yz/x^2 +zx/y^2 -2)^2013
cho 3 số x,y,z thỏa mãn đồng thời
\(3x-2y-2\sqrt{y+2012}+1=0\)
\(3y-2z-2\sqrt{z-2013}+1=0\)
\(3z-2x-2\sqrt{x-2}-2=0\)
tính giá trị của biểu thức P=\(\left(x-4\right)^{2011}+\left(y+2012\right)^{2012}+\left(z-2013\right)^{2013}\)
- Bạn làm được bài này chưa bạn?
đặt \(\hept{\begin{cases}A=3x-2y-2\sqrt{y+2012}+1=0\\B=3y-2z-.....\\C=3z-2x.....\end{cases}}.\)
vì a=b=c=0
Suy ra A+B+C=0
A+B+c= \(\left(x\right)+\left(y\right)+\left(z\right)-2\sqrt{y+2012}-2\sqrt{z-2013}-2\sqrt{x-2}\) " rút gọn làm tắt "
đến đây ta thêm 3-3 , 2012-2012 , 2013-2013 , 2-2 vào biểu thức rồi dùng hằng đẳng thức ta được
\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2012}-1\right)^2+\left(\sqrt{z-2013}-1\right)^2+2013-2012+2-3=0\)
\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2012}-1\right)^2+\left(\sqrt{z-2013}-1\right)^2=0\) rút gọn
\(\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y+2012}=1\\\sqrt{z-2013}=1\end{cases}}\)
thay vào P ta được
\(P=\left(3-4\right)^{2011}+\left(-2011+2012\right)^{2012}+\left(2014-2013\right)^{2013}\)
\(P=-1+1+1=1\)