Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Hằng
Xem chi tiết
Hoang Tran
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 21:31

Đặt \(P=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Ta có:

\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow\sqrt{a^2+b^2}\ge\dfrac{\sqrt{2}}{2}\left(a+b\right)\)

Tương tự và cộng lại ta được BĐT bên trái

Dấu "=" xảy ra khi \(a=b=c\)

Bên phải:

Áp dụng BĐT Bunhiacopxki:

\(P^2\le3\left(a^2+b^2+b^2+c^2+c^2+a^2\right)=6\left(a^2+b^2+c^2\right)\)

Mặt khác do a;b;c là 3 cạnh của 1 tam giác:

\(\Rightarrow\left\{{}\begin{matrix}a+b>c\\a+c>b\\b+c>a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ac+bc>c^2\\ab+bc>b^2\\ab+ac>c^2\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)< 6\left(ab+bc+ca\right)\)

\(\Rightarrow P^2\le3\left(a^2+b^2+c^2\right)+3\left(a^2+b^2+c^2\right)< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)\)

\(\Rightarrow P^2< 3\left(a+b+c\right)^2\Rightarrow P< \sqrt{3}\left(a+b+c\right)\)

Nguyễn Mai
Xem chi tiết
tth_new
27 tháng 11 2019 lúc 9:51

Đặt \(\frac{\left(a+b-c\right)}{2}=x;\frac{\left(c+a-b\right)}{2}=y;\frac{\left(b+c-a\right)}{2}=z\) thì x, y, z > 0(do a, b, c là độ dài 3 cạnh tam giác)

Và \(a=x+y;b=x+z;c=y+z\)

Thay vào, ta cần chứng minh: \(2\left[xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+6xyz\right]>0\) (luôn đúng do x, y, z > 0)

Done!

Khách vãng lai đã xóa
ONLINE SWORD ART
Xem chi tiết
lê thành đạt
18 tháng 4 2022 lúc 21:08

non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì

 

lê thành đạt
18 tháng 4 2022 lúc 21:08

đúng trẻ trâu

Nguyễn Thành Đạt
Xem chi tiết

Ta có : \(\hept{\begin{cases}\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\forall a,b,c\\\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\forall a,b,c\\\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\forall a,b,c\end{cases}}\)

Nhân vế với vế của 3 bất đẳng thức trên ta được : 

\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\left(1\right)\)

Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên \(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)

\(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)>0\)

Mà dễ thấy \(abc>0\)

Nên từ \(\left(1\right)\) : \(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)(đpcm)

Khách vãng lai đã xóa
Nguyễn Bá Phước
Xem chi tiết
Hồ Quốc Khánh
Xem chi tiết
Nguyễn Hồng Yến
7 tháng 2 2015 lúc 11:07

áp dụng BĐT AM-GM là ((a+b)/2)2>=ab vói mọi a, b >0 
=>(a+b-c+b+c-a)2/4 >=(lớn hơn bằng) (a+b-c)(b+c-a)    ( 3 cạnh của 1 tam giác là số dương)
=>b2>= (a+b-c)(b+c-a)      (1)
Tương tự có a2 >=(a+b-c)(c+a-b)     (2)
              và  c2 >=(b+c-a)(c+a-b)      (3)
Nhân  các vế của (1) (2) và (3) được:
  (abc)2>=[(a+b-c)(b+c-a)(c+a-b)]2
=> abc >= (a+b-c)(b+c-a)(c+a-b)  ( điều phải chứng minh)

Nguyễn Tiến
Xem chi tiết
Nguyễn Minh Đăng
4 tháng 8 2020 lúc 8:30

2) Ta có: Áp dụng bất đẳng thức:

\(xy\le\frac{\left(x+y\right)^2}{4}\) ta được:

\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{\left(a+b-c+b+c-a\right)^2}{4}=\frac{4b^2}{4}=b^2\)

Tương tự chứng minh được:

\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)

\(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

Nhân vế 3 bất đẳng thức trên với nhau ta được:

\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\)

\(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)

Dấu "=" xảy ra khi: \(a=b=c\)

Khách vãng lai đã xóa
Không Cần Biết
Xem chi tiết
Không Cần Biết
25 tháng 11 2017 lúc 20:07

Có a,b,c là độ dài 3 cạnh 1 tam giác.