x + 5x^2 = 0
x+1 = (x+1)^2
x^3 + x = 0
Đề: Tìm x
a)2x.(3x+5)-x.(6x-1)=33 k)5(x+3)-2x(x+3)=0
b)x(3x-1)+12x-4=0 i)5x(x-2)-(2-x)=0
c)5x(2x+1)-12x-6=0 m)x(x-1)-2(1-x)=0
d)x3-5x2+4x-20=0
e)2x3-5x2+2x-5=0
g)(x-2)3-x(x+1).(x-1)+62=5
a)2x.(3x+5)-x.(6x-1)=33
=>\(6x^2+10x-6x^2+x=33\)
=>11x=33
=>x=3
b)x(3x-1)+12x-4=0
=>x(3x-1)+4(3x-1)=0
=>(x-4)(3x-1)=0
=>x-4=0 hoặc 3x-1=0
+)x-4=0 +)3x-1=0
=>x=4 =>x=\(\frac{1}{3}\)
c)5x(2x+1)-12x-6=0
=>10x\(^2\)+5x-12x-6=0
=>10x\(^2\)-7x-6=0
=>(10x\(^2\)+5x)-(12x+6)=0
=>5x(2x+1)-6(2x+1)=0
=>(5x-6)(2x+1)=0
=>\(\left[{}\begin{matrix}5x-6=0\\2x+1=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{6}{5}\\x=\frac{-1}{2}\end{matrix}\right.\)
a,x+5/x-1+8/x^2-4x+3=x+1/x-3 b,x-4/x-1-x^2+3/1-x^2+5/x+1=0 c,3x/4-5=3-x/2+5x-1/6 d,(x-2)(x+2)-(x-3)(x+4)-2x+3=0 e,(x-1)^2+2(x+1)=5x+5 g,(x-3)(x+4)x=0
a: \(\dfrac{x+5}{x-1}+\dfrac{8}{x^2-4x+3}=\dfrac{x+1}{x-3}\)
=>(x+5)(x-3)+8=x^2-1
=>x^2+2x-15+8=x^2-1
=>2x-7=-1
=>x=3(loại)
b: \(\dfrac{x-4}{x-1}-\dfrac{x^2+3}{1-x^2}+\dfrac{5}{x+1}=0\)
=>(x-4)(x+1)+x^2+3+5(x-1)=0
=>x^2-3x-4+x^2+3+5x-5=0
=>2x^2+2x-6=0
=>x^2+x-3=0
=>\(x=\dfrac{-1\pm\sqrt{13}}{2}\)
e: =>x^2-2x+1+2x+2=5x+5
=>x^2+3=5x+5
=>x^2-5x-2=0
=>\(x=\dfrac{5\pm\sqrt{33}}{2}\)
g: (x-3)(x+4)*x=0
=>x=0 hoặc x-3=0 hoặc x+4=0
=>x=0;x=3;x=-4
1) 5x^2 = 13x
2) (5x^2 + 3x – 2 )^2 = (4x^2 – 3x – 2 )^2
3) x^3 + 27 + (x + 3)(x – 9) = 0
4) 5x(x – 2000) – x + 2000 = 0
5) 5x(x – 2) – x – 2 = 0
6) 4x(x + 1) = 8( x + 1)
7) x(x – 4) + (x – 4)^2 = 0
8) x^2 – 6x + 8 = 0
9) 9x^2 + 6x – 8 = 0
10) x^3 + x^2 + x + 1 = 0
11) x^3 - x^2 - x + 1 = 0
12) (5 – 2x)(2x + 7) = 4x^2 – 25
13) x(2x - 1) + 1/3 . 2/3x = 0
14) 4(2x + 7) – 9(x + 3)^2 = 0
GIÚP TUI ZỚI MỌI NGƯỜI OIWIII!!!
1,\(5x^2=13x\Leftrightarrow5x^2-13x=0\Leftrightarrow x\left(5x-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{13}{5}\end{cases}}\)
2,\(\left(5x^2+3x-2\right)^2=\left(4x^2-3x-2\right)^2\Leftrightarrow\orbr{\begin{cases}5x^2+3x-2=4x^2-3x-2\\5x^2+3x-2=-4x+3x+2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+6x=0\\9x^2-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\left(x+6\right)=0\\\left(3x\right)^2=2^2\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=0or-6\\x=-\frac{2}{3}or\frac{2}{3}\end{cases}}\)
3,\(x^3+27+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+3x+9+x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+4x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2+4x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x\left(x+4\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=0or-4\end{cases}}\)
4,\(5x\left(x-2000\right)-x+2000=0\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Leftrightarrow\left(x-2000\right)\left(5x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2000\\x=\frac{1}{5}\end{cases}}\)
5,\(5x\left(x-2\right)-x+2=0\Leftrightarrow5x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-2=0\\5x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{1}{5}\end{cases}}\)
6,\(4x\left(x+1\right)=8\left(x+1\right)\Leftrightarrow4x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-8\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\4x-8=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
7,\(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(2x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x-4=0\\2x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
tí làm nửa kia
8,\(x^2-6x+8=0\Leftrightarrow x^2-6x+9-1=0\Leftrightarrow\left(x-3\right)^2-1^2=0\)
\(\Leftrightarrow\left(x-3-1\right)\left(x-3+1\right)=0\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
9,\(9x^2+6x-8=0\Leftrightarrow9x^2+6x+1-9=0\Leftrightarrow\left(3x+1\right)^2-3^2=0\)
\(\Leftrightarrow\left(3x+1-3\right)\left(3x+1+3\right)=0\Leftrightarrow\left(3x-2\right)\left(3x+4\right)=0\Leftrightarrow\orbr{\begin{cases}3x-2=0\\3x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{4}{3}\end{cases}}\)
10,\(x^3+x^2+x+1=0\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}\Leftrightarrow}x=-1\)
11,\(x^3-x^2-x+1=0\Leftrightarrow\left(x-1\right)\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
12,\(\left(5-2x\right)\left(2x+7\right)=4x^2-25\Leftrightarrow\left(5-2x\right)\left(2x+7\right)-4x^2+25=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)-\left(5-2x\right)\left(5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7-5-2x\right)=0\Leftrightarrow\left(5-2x\right).2=0\Leftrightarrow5-2x=0\Leftrightarrow x=\frac{5}{2}\)
13,\(x\left(2x-1\right)+\frac{1}{3}.\frac{2}{3}x=0\Leftrightarrow x\left(2x-1\right)+\frac{2}{9}x=0\)
\(\Leftrightarrow x\left(2x-1+\frac{2}{9}\right)=0\Leftrightarrow x\left(2x-\frac{7}{9}\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x=\frac{7}{9}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{18}\end{cases}}\)
14,\(4\left(2x+7\right)-9\left(x+3\right)^2=0\Leftrightarrow8x+28-9x^2-54x-81=0\)
\(\Leftrightarrow-9x^2+\left(8x-54x\right)+\left(28-81\right)=0\Leftrightarrow-9x^2-46x-53=0\)
\(\Leftrightarrow9x^2+46x+53=0\)Ta có : \(\Delta'=\frac{2116}{4}-477=529-477=52\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-23+\sqrt{52}}{9}\\x=\frac{-23-\sqrt{52}}{9}\end{cases}}\)
Bài 3
1.(x-1)(x+2)+5x-5=0
2.(3x+5)(x-3)-6x-10=0
3.(x-2)(2x+3)-7x2+14x=0
4.(x+1)(x-3)-15+5x=0
5.5(2x-1)(x+3)+5x-10x2=0
Bài4
1.3x-6+(x+1)(x-2)=0
2.4x2+6x-(2x+3)(3x-x)=0
3.5x-10-(2-x)(4+x)=0
4.10-10x+(x-1)(x-3)=0
5.20x2+30x-2(x-5)(2x+3)=0
Bài 3:
1. \(\left(x-1\right)\left(x+2\right)+5x-5=0\)
\(\Rightarrow\left(x-1\right)\left(x+2\right)+5\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+2+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
Vậy.......................
2. \(\left(3x+5\right)\left(x-3\right)-6x-10=0\)
\(\Rightarrow\left(3x+5\right)\left(x-3\right)-2\left(3x+5\right)=0\)
\(\Rightarrow\left(3x+5\right)\left(x-3-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)
Vậy........................
3. \(\left(x-2\right)\left(2x+3\right)-7x^2+14x=0\)
\(\Rightarrow\left(x-2\right)\left(2x+3\right)-7x\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(2x+3-7x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\-5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy............................
4, 5 tương tự nhé bn!
bài 3
1 (x-1)(x+2)+5x-5=0
=>(x-1)(x+2)+(5x-5)=o
=>(x-1)(x+2)+5(x-1)=0
=>(x-1)(x+2+5)=0
=>(x-1)(x+7)=0
=>\(\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
vậy x=1 hoặc x=-7
2. (3x+5)(x-3)-6x-10=0
=>(3x+5)(x-3)-(6x+10)=0
=>(3x+5)(x-3)-2(3x+5)=0
=>(3x+5)(x-3-2)=0
=>(3x+5)(x-5)=0
=>\(\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)
1) (x+6)(3x-1)+x+6=0
2) (x+4)(5x+9)-x-4=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
4)2x (2x-3)=(3-2x)(2-5x)
5)(2x-7)^2-6(2x-7)(x-3)=0
6)(x-2)(x+1)=x^2-4
7) x^2-5x+6=0
8)2x^3+6x^2=x^2+3x
9)(2x+5)^2=(x+2)^2
1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)
1) 2x^4-7x^2-4=0
2)(x62+5x^2)-2(x^2+5x)-24=0
3)x^2-2x-3(x-1)+3=0
4)(x+1/x)^2+2(x+1/x)-8=0
5)x(x+1)(x+2)(2x+3)-18=0
7)(x^2+4x+7)=(x+4)nhân vs căn bậc hai cua x^2 +2
A) 2x³+6x²=x²+3x
B) (2x+5)²=(x+2)²
C) x²-5x+6=0
D) (2x-7)²-6(2x-7)(x-3)=0
E) (x-2)(x+1)=x²-4
G) 2x(2x-3)=(3-2x)(2-5x)
H) (1-x)(5x+3)=(3x-7)(x-1)
F) (x+6)(3x-1)+x+6=0
I) (4x-1)(x-3)=(x-3)(5x+2)
K) (x+4)(5x+9)-x-4=0
H) (x+3)(x-5)+(x+3)(3x-4)=0
M) (2x+3)(-x+7)=0
A) 2x³+6x²=x²+3x
B) (2x+5)²=(x+2)²
C) x²-5x+6=0
D) (2x-7)²-6(2x-7)(x-3)=0
E) (x-2)(x+1)=x²-4
G) 2x(2x-3)=(3-2x)(2-5x)
H) (1-x)(5x+3)=(3x-7)(x-1)
F) (x+6)(3x-1)+x+6=0
I) (4x-1)(x-3)=(x-3)(5x+2)
K) (x+4)(5x+9)-x-4=0
H) (x+3)(x-5)+(x+3)(3x-4)=0
c. x^2-5x +6 = 0
<=> x^2 - 5x = -6
<=> - 4x = -6
<=> x= -6/-4
Mình chỉ phân tích đa thức thành nhân tử thôi , phần còn lại bạn tự tính nha keo dài lắm
A) 2x2(x+3) - x(x+3) = 0 <=> x(x - 3)(2x-1)=0
B) (2x+5)2 - (x+2)2=0 <=> (x+3)(3x+7)=0
C) (x2-2x) - (3x-6)=0 <=> (x-2)(x-3)=0
D) (2x-7)(2x-7-6x+18)=0 <=> (2x-7)(-4x+11)=0
E) (x-2)(x+1) - (x-2)(x+2)=0 <=> (x-2)*(-1)=0 <=> x-2=0
G) (2x-3)(2x+2-5x)=0 <=> (2x-3)(-3x+2)=0
H) (1-x)(5x+3+3x-7)=0 <=> (1-x)(8x-4)=0
F) (x+6)*3x=0
I) (x-3)(4x-1-5x-2)=0 <=> (x-3)(-x-3)=0
K) (x+4)(5x+8)=0
H) (x+3)(4x-9)=0
B> <2X+5>2-<X+2>2=0
<2X+5-X-2><2X+X+2>=0
<X+3><3X+7>=0
X+3=0 HOẶC 3X+7=0
X=-3 HOẶC X=-7/3
C>X2-5X+6=0
X2-4X+4-X+2=0
<X-2>2-<X-2>=0
<X-2.><X-3>=0
X-2=0 HOẶC X-3=0
X=2 HOẶC X=3
D> <2X-7><2X-7-6<X-3>>=0
<2X-7><-4X+11>=0
2X-7=0 HOẶC -4X+11=0
X=7/2 HOẶC X=11/4
E><X-2><X+1>=X2-4
<X-2><X+1>-<X2-4>=0
<X-2><X+1>-<X-2><X+2>=0
-X+2=0
X=2
CÒN NHIÊU TỰ LÀM ĐI MỆT WA
Help me
A) 2x³+6x²=x²+3x
B) (2x+5)²=(x+2)²
C) x²-5x+6=0
D) (2x-7)²-6(2x-7)(x-3)=0
E) (x-2)(x+1)=x²-4
G) 2x(2x-3)=(3-2x)(2-5x)
H) (1-x)(5x+3)=(3x-7)(x-1)
F) (x+6)(3x-1)+x+6=0
I) (4x-1)(x-3)=(x-3)(5x+2)
K) (x+4)(5x+9)-x-4=0
H) (x+3)(x-5)+(x+3)(3x-4)=0
A) 2x³+6x²=x²+3x
B) (2x+5)²=(x+2)²
C) x²-5x+6=0
D) (2x-7)²-6(2x-7)(x-3)=0
E) (x-2)(x+1)=x²-4
G) 2x(2x-3)=(3-2x)(2-5x)
H) (1-x)(5x+3)=(3x-7)(x-1)
F) (x+6)(3x-1)+x+6=0
I) (4x-1)(x-3)=(x-3)(5x+2)
K) (x+4)(5x+9)-x-4=0
H) (x+3)(x-5)+(x+3)(3x-4)=0
c. x^2-5x+6=0
<=> x^2-5x=-6
<=> -4x=-6
<=> x=-6/-4
vậy tập nghiệm của pt là s={-6/-4}