Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
3x3+3x2-36x
Phân tích đa thức thành nhân tử bằng phối hợp nhiều phương pháp
a) 3x3-75x
b) x4y2-12x3y2+48x2y2-64xy2
a: \(3x^3-75x\)
\(=3x\left(x^2-25\right)\)
\(=3x\left(x-5\right)\left(x+5\right)\)
b: \(x^4y^2-12x^3y^2+48x^2y^2-64xy^2\)
\(=xy^2\left(x^3-12x^2+48x-64\right)\)
\(=xy^2\cdot\left(x-4\right)^3\)
Phân tích đa thức thành nhân tử bằng phối hợp nhiều phương pháp
a) x4-4x2-4x-1
b) 10x4y2-10x3y2-10x2y2+10xy2
a) \(x^4-4x^2-4x-1=\left(x^4-1\right)-4x\left(x+1\right)=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-4x\left(x+1\right)=\left(x+1\right)\left[\left(x^2+1\right)\left(x-1\right)-4x\right]=\left(x+1\right)\left(x^3-x^2+x-1-4x\right)=\left(x+1\right)\left(x^3-x^2-3x-1\right)\)
b) \(10x^4y^2-10x^3y^2-10x^2y^2+10xy^2=10xy^2\left(x^3-x^2-x+1\right)=10xy^2\left(x-1\right)^2\left(x+1\right)\)
a: \(x^4-4x^2-4x-1\)
\(=\left(x^4-1\right)-4x\left(x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-4x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+x-x^2-1-4x\right)\)
\(=\left(x+1\right)\left(x^3-x^2-3x-1\right)\)
b: \(10x^4y^2-10x^3y^2-10x^2y^2+10xy^2\)
\(=10xy^2\left(x^3-x^2-x+1\right)\)
\(=10xy^2\cdot\left[\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\right]\)
\(=10xy^2\cdot\left(x+1\right)\left(x-1\right)^2\)
Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp:
12ax + 16y2 - 4a2 - 9x2
= (4y)^2 + 12ax - (3x)^2 - (2a)^2
= (4y-3x)^2 - (2a)^2
= (4y-3x-2a)(4y-3x+2a)
Phân tích đa thức thành nhân tử (bằng cách phối hợp 2 phương pháp)
a/ 5x2y - 20xy + 20y b/ 3x3 + 6x2 + 3x
c/ 3x2y - 12y d/ 7x3 – 28x2 + 28x
a) \(5x^2y-20xy+20y=5y\left(x^2-4x+4\right)=5y\left(x-2\right)^2\)
b) \(3x^3+6x^2+3x=3x\left(x^2+2x+1\right)=3x\left(x+1\right)^2\)
c) \(3x^2y-12y=3y\left(x^2-4\right)=3y\left(x-2\right)\left(x+2\right)\)
d) \(7x^3-28x^2+28x=7x\left(x^2-4x+4\right)=7x\left(x-2\right)^2\)
a: \(5x^2y-20xy+20y\)
\(=4y\left(x^2-4x+4\right)\)
\(=4x\left(x-2\right)^2\)
b: \(3x^3+6x^2+3x\)
\(=3x\left(x^2+2x+1\right)\)
\(=3x\left(x+1\right)^2\)
c: \(3x^2y-12y\)
\(=3y\left(x^2-4\right)\)
\(=3y\left(x-2\right)\left(x+2\right)\)
d: \(7x^3-28x^2+28x\)
\(=7x\left(x^2-4x+4\right)\)
\(=7x\left(x-2\right)^2\)
Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp.
1/ x2 + 5x - 6
2/ 5x2 + 5xy x - y
3/ 7x - 6x2 - 2
\(1,x^2+5x-6=x^2-x+6x-6=x\left(x-1\right)+6\left(x-1\right)=\left(x-1\right)\left(x+6\right)\)
\(3,7x-6x^2-2=-6x^2+7x-2=-6x^2+3x+4x-2=3x\left(-2x+1\right)+2\left(2x-1\right)\)
\(=3x\left(1-2x\right)-2\left(1-2x\right)=\left(1-2x\right)\left(3x-2\right)\)
\(2,5x^2+5xy-x-y=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)
Áp dụng tính chất phân phối của phép nhân đối với phép cộng, hãy tìm tích 2x.(3x2 – 8x + 1) bằng cách nhân 2x với từng hạng tử của đa thức 3x2 – 8x +1 rồi cộng các tích tìm được
Đa thức 3x2 – 8x +1 có các hạng tử là: 3x2 ; -8x ; 1
Ta có: 2x . 3x2 = (2.3). (x.x2) = 6x3
2x. (-8x) = [2.(-8) ]. (x.x) = -16x2
2x. 1 = 2x
Vậy 2x.(3x2 – 8x + 1) = 6x3 -16x2 + 2x
Phân tích đa thức thành nhân thức ( phối hợp nhiều phương pháp)
2x - 2y - x2 + 2xy - y2
2x - 2y - x² + 2xy - y²
= (2x - 2y) - (x² - 2xy + y²)
= 2(x - y) - (x - y)²
= (x - y)(2 - x + y)
phân tích đa thưc thành nhân tử bằng phương pháp phối hợp nhiều phương pháp
x^4-6a^3+12a^2-8a
mình đang cần gấp
phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
1) x^3 - x^2 - x + 1
2)x^4 + 6x^2y +9y^2 - 1
3)x^3 + x^2y - 4x - 4y
4)3x^2- 6xy + 3y^2 - 12z^2
\(x^3-x^2-x+1\)
\(=x^2\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-1\right)\)