Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Linh Linh
Bài 5 : Cho nửa đường tròn (O;R) đường kính AB và một điểm E di động trên nửa đường tròn đó (E không trùng với A và B ) Vẽ các tia tiếp tuyến Ax, By với nửa đường tròn. Tia AE cắt By tại C, tia BE cắt Ax tại D a. CMR tích AD.BC không đổi b. Tiếp tuyến tại E của nửa đường tròn cắt Ax,By theo thứ tự tại M và N. CMR ba đường thẳng MN,AB,CD đồng quy hoặc song song với nhau c. Xác định vị trí của điểm E trên nửa đường tròn để diện tich tứ giác ABCD nhỏ nhất. Tính diện tich nhỏ nhất đó Bài 6: Cho đ...
Đọc tiếp

Những câu hỏi liên quan
Ha Thu
Xem chi tiết
Yến Nhi
Xem chi tiết
Yến Nhi
Xem chi tiết
minh ngoc
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 5 2021 lúc 10:51

a) Xét tứ giác AMCO có 

\(\widehat{MAO}\) và \(\widehat{MCO}\) là hai góc đối

\(\widehat{MAO}+\widehat{MCO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AMCO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét (O) có 

\(\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ADB}=90^0\)(Hệ quả góc nội tiếp)

hay AD\(\perp\)MB tại D

Xét (O) có 

MA là tiếp tuyến có A là tiếp điểm(gt)

MC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: MA=MC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: MA=MC(cmt)

nên M nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OA=OC(=R)

nên O nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra MO là đường trung trực của AC

hay MO\(\perp\)AC tại E

Xét tứ giác AMDE có 

\(\widehat{ADM}=\widehat{AEM}\left(=90^0\right)\)

\(\widehat{ADM}\) và \(\widehat{AEM}\) là hai góc cùng nhìn cạnh AM

Do đó: AMDE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Ngoc Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2023 lúc 23:18

a: Xét tứ giác PAOM có

góc PAO+góc PMO=180 độ

=>PAOM là tứ giác nội tiếp

b: Xét (O) có

PA,PM là tiếp tuyến

nên PA=PM và OP là phân giác của góc MOA(1)

mà OA=OM

nên OP là trung trực của AM

=>OP vuông góc AM

Xét (O) có

QM,QB là tiếp tuyến

nên QM=QB và OQ là phân giác của góc MOB(2)

mà OM=OB

nên OQ là trung trực của MB

=>OQ vuông góc MB tại K

Từ (1), (2) suy ra góc POQ=1/2*180=90 độ

Xét tứ giác MIOK có

góc MIO=góc MKO=góc IOK=90 độ

=>MIOK là hình chữ nhật

Xét ΔOPQ vuông tại O có OM là đường cao

nên MP*MQ=OM^2=R^2

=>AP*QB=OM^2=R^2 ko đổi

trannnn
Xem chi tiết
trannnn
14 tháng 8 2021 lúc 10:41

giup minh bai 1 gap voi ah!!

bánh mì que
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 11 2023 lúc 18:44

c: Gọi giao điểm của BC với Ax là K

BC\(\perp\)AC tại C

=>AC\(\perp\)BK tại K

=>ΔACK vuông tại C

\(\widehat{DKC}+\widehat{DAC}=90^0\)(ΔACK vuông tại C)

\(\widehat{DCK}+\widehat{DCA}=\widehat{KCA}=90^0\)

mà \(\widehat{DCA}=\widehat{DAC}\)(ΔDAC cân tại D)

nên \(\widehat{DKC}=\widehat{DCK}\)

=>DC=DK

mà DC=DA

nên DK=DA

=>D là trung điểm của AK

CH\(\perp\)AB

AK\(\perp\)AB

Do đó: CH//AK

Xét ΔOKD có CI//KD

nên \(\dfrac{CI}{KD}=\dfrac{OI}{OD}\left(1\right)\)

Xét ΔOAD có IH//AD

nên \(\dfrac{IH}{AD}=\dfrac{OI}{OD}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{CI}{KD}=\dfrac{IH}{AD}\)

mà KD=AD

nên CI=IH

=>I là trung điểm của CH

And see Hide
Xem chi tiết
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 12 2023 lúc 13:09

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó:ΔACB vuông tại C

Xét (O) có

DC,DA là tiếp tuyến

Do đó: DC=DA

Xét (O)có

EC,EB là tiếp tuyến

Do đó: EC=EB

DC+CE=DE

mà DC=DA và EC=EB

nên DA+EB=DE

b: Xét tứ giác DAOC có \(\widehat{DAO}+\widehat{DCO}=90^0+90^0=180^0\)

=>DAOC là tứ giác nội tiếp

=>D,A,O,C cùng thuộc một đường tròn

Xét ΔOAC có OA=OC=R

nên ΔOAC cân tại O

ADCO là tứ giác nội tiếp

=>\(\widehat{ADO}=\widehat{ACO}\)

mà \(\widehat{ACO}=\widehat{OAC}\)(ΔOAC cân tại O)

nên \(\widehat{ADO}=\widehat{OAC}=\widehat{CAB}\)

 

Big City Boy
Xem chi tiết