Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Uyên Dii
Xem chi tiết
Despacito
21 tháng 9 2017 lúc 16:14

b) \(\sqrt{16x}-5\left(\sqrt{x}-2\right)-\sqrt{79x}-5\)

\(=\sqrt{4^2x}-5\sqrt{x}+10-\sqrt{79x}-5\)

\(=4\sqrt{x}-5\sqrt{x}-\sqrt{79x}+5\)

\(=-\sqrt{x}-\sqrt{79x}+5\)

\(=-\sqrt{x}-\sqrt{79}.\sqrt{x}+5\)

\(=\sqrt{x}\left(-1-\sqrt{79}\right)+5\)

Despacito
21 tháng 9 2017 lúc 15:49

a) \(4\sqrt{x}-5\sqrt{4x}-\sqrt{25x}-3\sqrt{x}-5\)

\(=4\sqrt{x}-5\sqrt{2^2x}-\sqrt{5^2x}-3\sqrt{x}-5\)

\(=4\sqrt{x}-10\sqrt{x}-5\sqrt{x}-3\sqrt{x}-5\)

\(=\left(4-10-5-3\right)\sqrt{x}-5\)

\(=-14\sqrt{x}-5\)

cau b) ban viet ro de bai ra di

Uyên Dii
21 tháng 9 2017 lúc 16:07

\(\sqrt{16x}-5\left(\sqrt{x}-2\right)-\sqrt{79x}-5\) 5

Uyên Dii
Xem chi tiết
Uyên Dii
Xem chi tiết
Nguyễn Huế Anh
21 tháng 9 2017 lúc 13:32

a)\(4\sqrt{x}-5\sqrt{4x}-\sqrt{25x}-3\sqrt{x}-5\)

=\(4\sqrt{x}-10\sqrt{x}-5\sqrt{x}-3\sqrt{x}-5\)

=\(-14\sqrt{x}-5\)

b)\(\sqrt{16x}-5\left(\sqrt{x}-2\right)\sqrt{79x}-5\)

=\(4\sqrt{x}-\left(5\sqrt{x}-10\right)\sqrt{79x}-5\)

=\(4\sqrt{x}-\left(5\sqrt{79}x-10\sqrt{79}x\right)-5\)

=\(4\sqrt{x}+5\sqrt{79}x-5\)

Uyên Dii
Xem chi tiết
Ho Truc
24 tháng 9 2017 lúc 11:41

\(=4\sqrt{x}-5\cdot2\sqrt{x}-5\sqrt{x}-3\sqrt{x}-5=4\sqrt{x}-10\sqrt{x}-5\sqrt{x}-3\sqrt{x}-5=-14\sqrt{x}-5\)

Đặng Minh Thu
Xem chi tiết
pham hack
Xem chi tiết
Phạm Phúc Trí
29 tháng 3 2022 lúc 15:06

yggucbsgfuyvfbsudy

Khách vãng lai đã xóa
Phạm Minh Dương
30 tháng 3 2022 lúc 19:54

????????

Khách vãng lai đã xóa
Hàn Băng Băng
Xem chi tiết
Akai Haruma
29 tháng 12 2023 lúc 15:22

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.

Ly Ly
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 7 2021 lúc 16:23

a) Pt \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=5\Leftrightarrow\left|x-2\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

Vậy...

b)Đk: \(x\ge-1\)

Pt \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}\)

\(\Leftrightarrow4\sqrt{x+1}=16\)\(\Leftrightarrow x+1=16\)\(\Leftrightarrow x=15\) (tm)

Vậy...

\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) (a>0)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=a+\sqrt{a}-\left(2\sqrt{a}+1\right)+1=a-\sqrt{a}\)

b) \(A=a-\sqrt{a}=a-2.\dfrac{1}{2}\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\left(tmđk\right)\) 

Vậy \(A_{min}=-\dfrac{1}{4}\)

An Thy
5 tháng 7 2021 lúc 16:25

a) \(\sqrt{x^2-4x+4}=5\Rightarrow\sqrt{\left(x-2\right)^2}=5\Rightarrow\left|x-2\right|=5\)

\(\Rightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

b) \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)

\(\Rightarrow\sqrt{16\left(x+1\right)}-3\sqrt{x+1}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Rightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Rightarrow4\sqrt{x+1}=16\Rightarrow\sqrt{x+1}=4\Rightarrow x=15\)

a) \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)

b) Ta có: \(a-\sqrt{a}=\left(\sqrt{a}\right)^2-2.\sqrt{a}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)

\(=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(\Rightarrow A_{min}=-\dfrac{1}{4}\) khi \(a=\dfrac{1}{4}\)

loann nguyễn
5 tháng 7 2021 lúc 16:42

✱ giải pt:

a.\(\sqrt{x^2-4x+4}\)\(=5\)

\(\sqrt{\left(x-2\right)^2}=5\)

\(\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

vậy....

b.\(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)

⇔ \(4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

⇔ \(4\sqrt{x+1}=16\)

⇔ \(\sqrt{x+1}=16\)

⇒ \(x+1=256\)

⇔ \(x=255\)

vậy.....

 

Nguyễn Hương Thảo
Xem chi tiết
Nguyễn Hương Thảo
18 tháng 8 2020 lúc 13:02

/x-25 và /x-2 đấy ạ,máy em bị đánh lỗi. :((

Khách vãng lai đã xóa
Phu Dang Gia
18 tháng 8 2020 lúc 14:18

\(5\sqrt{x}-\frac{\left(x+10\sqrt{x}+25\right)\left(\sqrt{x}-5\right)}{x-25}=5\sqrt{x}-\frac{\left(\sqrt{x}+5\right)^2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=5\sqrt{x}-\left(\sqrt{x}+5\right)=4\sqrt{x}-5\)

\(\frac{\sqrt{x^2-4x+4}}{x-2}=\frac{\sqrt{\left(x-2\right)^2}}{x-2}=\frac{\left|x-2\right|}{x-2}=\orbr{\begin{cases}\frac{x-2}{x-2}\left(x>2\right)\\\frac{2-x}{x-2}\left(x< 2\right)\end{cases}=\orbr{\begin{cases}1\left(x>2\right)\\-1\left(x< 2\right)\end{cases}}}\)

Khách vãng lai đã xóa
kiss you
Xem chi tiết