Tìm nghiệm nguyên của pt: xy\(^{^{ }2}\) + 2xy - 4y + x.
Giúp mk với ^^
Giúp mình với
Cho pt x^2-(2m+3)x+4m+2=0
a)chứng minh pt trên có nghiệm với mọi m
b)tìm GTLN của A=x1x2-x1^2-x2^2
c)tìm m để pt có nghiệm thỏa mãn 2x1-3x2=5
tìm nghiệm nguyên của pt
\(x^2+xy+y^2=x^2y^2\)
Ta có x2 + xy + y2 = x2 y2
<=> (x + y)2 = xy(xy + 1)
Mà x2 y2\(\le\)xy(xy + 1) \(\le\)(xy + 1)2
Không tồn tại số chính phương giữa 2 số chính phương liên tiếp nên để xy(xy + 1) là số chính phương thì nó phải là 1 trong hai số chính phương liên tiếp đó hay xy(xy + 1) = 0
Kết hợp với phương trình đầu thì nghiệm nguyên cần tìm là (x,y) = (0,0; 1,-1; -1,1)
x^2+y^2=x+y+xy
tìm nghiệm của pt
kb voi mk
Tìm nghiệm nguyên của pt: \(x^2-2xy+2y^2-4x=\)\(-8\)
viết lại pt dưới dạng
\(x^2-2x\left(y+2\right)+\left(2y^2+8\right)=0.\)
\(\Delta`x=\left(y+2\right)^2-\left(2y^2+8\right)=0\)
\(\Delta`=y^2+4y+4-2y^2-8=-y^2+4y-4=0\)
\(\Delta`=-\left(y-2\right)^2=0\Leftrightarrow y=2\)
thay y=2
\(x^2-4x+8-4x=-8\)
\(x^2-8x+16=0\)
\(\left(x-4\right)^2=0\Leftrightarrow x=4\)
\(x^2-2xy+2y^2-4x=-8\)
\(\Leftrightarrow x^2-2xy+2y^2-4x+8=0\)
\(\Leftrightarrow2x^2-4xy+4y^2-8x+16=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(x-4\right)^2=0\)
Ta có: \(\left(x-2y\right)^2+\left(x-4\right)^2\ge0\) \(\forall x;y\)
Dấu "=" xảy ra: \(\Leftrightarrow\hept{\begin{cases}x-2y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2y\\x=4\end{cases}\Leftrightarrow\hept{\begin{cases}y=2\\x=4\end{cases}}}\) (thỏa mãn)
Vậy x = 4 và y = 2
Bài bạn gửi hay đấy .Chúc bạn học tốt.
tìm nghiệm nguyên của pt
\(x^2+xy+y^2=x^2y^2\)
sao ra x=y đc nhỉ
pt đã cho có dạng \(4x^2+8xy+4y^2+1=4x^2y^2+4xy+1\Leftrightarrow4\left(x+y\right)^2-\left(2xy-1\right)^2=-1\)
\(\Leftrightarrow\left(2x+2y+2xy-1\right)\left(2x+2y-2xy+1\right)=-1\)
Đến đây lập bảng nhé => được x y
\(x^2+xy+y^2=x^2y^2.\)
+ x =0; y =0 là nghiệm
+ x y khác 0
\(\frac{x}{y}+\frac{y}{x}=xy-1\in Z\)
=> x =y
=> 3x2 =x4 => x2 = 3 loại
Vậy x = y =0 là nghiệm duy nhất
Cho c>d, tìm đk của a và b để pt sau có 2 nghiệm phân biệt.
a2/(x-c)+b2/(x-d)=1
Giúp mk với
quy đồng lên thì dc
(ax^2-a^2a+b^2*x-b^2*c)=x^2-cx-dx+cd
<=>x^2(a-1)+x(b^2+c+d)-(a^2*d+b^2c+cd)=0
đen ta =(a-1)^2+4(b^2+c+d)(a^2a+b^2c+cd)
giải ra đen ta >0 là dc
giúp mk với : tìm 2 số nguyên x,y biết xy=x-y
a) tình GTNN của biểu thức \(M=x^2+y^2-xy-x+y+1\)
b) giải phương trình \(\left(y-4,5\right)^4+\left(y-5,5\right)^4-1=0\)
c) tìm nghiệm nguyên của phương trình \(3x^2+5y^2=345\)
GIÚP MÌNH VỚI LÀM ƠN
Tìm nghiệm nguyên của pt: x\(^2\)+ \(2y^2\)+ 2xy + 3y - 4 = 0.
giúp mình với, gấp :((
Phương trình tương đương: \(\left(x^2+2xy+y^2\right)+y^2+3y-4=0\)
\(\Leftrightarrow\left(x+y\right)^2=4-y^2-3y\)
do \(VT\ge0\) \(\Rightarrow VP\ge0\)\(\Rightarrow4-y^2-3y\ge0\)\(\Leftrightarrow y^2+3y-4\le0\)
\(\Leftrightarrow4y^2+12y-16\le0\)\(\Leftrightarrow\left(2y+3\right)^2-25\le0\Leftrightarrow\left(2y+3\right)^2\le25\)
\(\Rightarrow-5\le2y+3\le5\Rightarrow-4\le y\le1\)
Đến đây thì thế vào pt là tìm được x