Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 17:52

Đặt \(2017=a\)

\(A=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2a+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2\left(a+1\right)\cdot\dfrac{a}{a+1}+\left(\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1-\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\left|a+1-\dfrac{a}{a+1}\right|+\dfrac{a}{a+1}\)

Ta có \(\dfrac{a}{a+1}< 1\Leftrightarrow a+1-\dfrac{a}{a+1}>0\)

\(\Leftrightarrow A=a+1-\dfrac{a}{a+1}+\dfrac{a}{a+1}=a+1=2018\)

Thắng Trịnh
Xem chi tiết
_Guiltykamikk_
16 tháng 10 2018 lúc 20:21

\(B=\sqrt{1+2017^2+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)

\(B=\sqrt{\left(1+2.2017+2017^2\right)-2.2017+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)

\(B=\sqrt{\left(1+2017\right)^2-2.2017+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)

\(B=\sqrt{2018^2-2.2017+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)

\(B=\sqrt{\left(2018-\frac{2017}{2018}\right)^2}+\frac{2017}{2018}\)

Mà  \(\frac{2017}{2018}< 1\Rightarrow2018-\frac{2017}{2018}>0\)

\(\Rightarrow B=2018-\frac{2017}{2018}+\frac{2017}{2018}\)

\(B=2018\)

Vậy bt B có giá trị nguyên 

Thắng Trịnh
16 tháng 10 2018 lúc 22:11

Cảm ơn bạn mk vừa đăng lên thì đã thấy luôn cách giải 😂

Nguyễn Thu Uyên
Xem chi tiết
Nguyễn Thu Uyên
25 tháng 4 2018 lúc 8:39

lộn lớp 6

Trương Khánh Hoàng
Xem chi tiết
Nguyễn Việt Long
Xem chi tiết
Galaxy
12 tháng 3 2018 lúc 20:26

hình như cái này đâu phải toán lớp 5 đâu bạn

Nguyễn Việt Long
12 tháng 3 2018 lúc 20:29

nhầm toán lớp 6

Trương Thị Viên
13 tháng 3 2020 lúc 15:47

12+13×14

Khách vãng lai đã xóa
Nguyễn Việt Long
Xem chi tiết
Charlet
Xem chi tiết
Nguoi Ngu
Xem chi tiết
Nhân Thiện Hoàng
10 tháng 2 2018 lúc 21:07

cái gì đấy

Trình Nguyễn Quang Duy
Xem chi tiết
Duc Loi
17 tháng 6 2019 lúc 10:49

Ta đi so sánh \(\frac{2017.2018+1}{2017.2018}\)với\(\frac{2018.2019+1}{2018.2019}\)có :

\(\frac{2017.2018+1}{2017.2018}=\frac{2017.2018}{2017.2018}+\frac{1}{2017.2018}=1+\frac{1}{2017.2018}\left(\cdot\right)\)

\(\frac{2018.2019+1}{2018.2019}=\frac{2018.2019}{2018.2019}+\frac{1}{2018.2019}\left(\cdot\cdot\right)\)

\(\frac{1}{2017.2018}>\frac{1}{2018.2019}\left(\cdot\cdot\cdot\right)\)Từ \(\left(\cdot\right);\left(\cdot\cdot\right)\&\left(\cdot\cdot\cdot\right)\Rightarrow\frac{2017.2018+1}{2017.2018}>\frac{2018.2019+1}{2018.2019}\)

\(\Leftrightarrow\frac{2017.2018}{2017.2018+1}< \frac{2018.2019}{2018.2019+1}.\)

T.Ps
17 tháng 6 2019 lúc 10:45

#)Trả lời :

\(\frac{2017\times2018}{2017\times2018+1}=\frac{0}{1}=0\)

\(\frac{2018\times2019}{2018\times2019+1}=\frac{0}{1}=0\)

\(\Rightarrow\frac{2017\times2018}{2017\times2018+1}=\frac{2018\times2019}{2018\times2019+1}\)

khanh
17 tháng 6 2019 lúc 10:47
๖²⁴ʱŤ.Ƥεɳɠʉїɳş༉ sai bét