\(\sqrt{1+2017^2+\dfrac{2017^2}{2018^2}}+\dfrac{2017}{2018}\)
\(\sqrt{1+2017^2+\dfrac{2017^2}{2018^2}}+\dfrac{2017}{2018}\)
a) \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+....+\dfrac{1}{\sqrt{19}+\sqrt{20}}\)
b) \(\sqrt{1+2017^2+\dfrac{2017^2}{2018^2}}+\dfrac{2017}{2018}\)
Tính M=\(\sqrt{1^2+2017+\dfrac{2017}{2018}}+\dfrac{2017}{2018}\)
Tính giá trị của biểu thức \(P=\dfrac{4\left(x+1\right)x^{2018}-2x^{2017}+2x+1}{2x^2+3x}\) tại \(x=\sqrt{\dfrac{1}{2\sqrt{3}-2}-\dfrac{3}{2\sqrt{3}+2}}\)
Cho (x+\(\sqrt{x^2+2017}\))*(y+\(\sqrt{y^2+2017}\)) = 2017
Tính giá trị biểu thức: P= x2017+y2017+2017
Tính :
\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+3}+.....+\dfrac{1}{\sqrt{2017}+2018}\)
Tìm P min biết
\(P=\sqrt{\left(x+2017\right)^2}+\sqrt{\left(x+2018\right)^2}\)
So sanh: x=\(\sqrt{2019}\) va y=\(2\sqrt{2018}-\sqrt{2017}\)