tìm max của a+b+c+ac+cb+ab/a2+b2+c2 khi a+b+c=6,a,b,c>0
cho a,b,c không đồng thời bằng 0 thỏa mãn a2+b2+c2=2,ab+bc+ca =1.tìm min,max của a,b,c
cho a,b,c>0,a+b+c=1 tìm max F=abc(a2+b2+c2)
Cho ab + bc + ac = 9 , a≥1 , b≥1 , c≥1
tìm min và max của bt P = a2+b2+c2
Câu 4: Giả sử cần tìm giá trị lớn nhất trong các ô A2, B2 và C2. Hàm nào sau đây là đúng?
A. max(A2,B2,C2) B. =max(A2,B2,C2) C. min(A2,B2,C2) D. =min(A2,B2,C2)
cho a,b,c >0 thỏa mãn a2+b2+c2=2 tìm giá trị lớn nhất của \(\dfrac{a}{2+bc}+\dfrac{b}{2+ac}+\dfrac{c}{2+ab}\)
cho a+b+c=0 và a≠0,b≠0,c≠0 tính M
M=a2/a2-b2-c2 +b2/b2-c2-a2 +c2/c2-a2-b2
Ta có: a+b+c=0
nên a+b=-c
Ta có: \(a^2-b^2-c^2\)
\(=a^2-\left(b^2+c^2\right)\)
\(=a^2-\left[\left(b+c\right)^2-2bc\right]\)
\(=a^2-\left(b+c\right)^2+2bc\)
\(=\left(a-b-c\right)\left(a+b+c\right)+2bc\)
\(=2bc\)
Ta có: \(b^2-c^2-a^2\)
\(=b^2-\left(c^2+a^2\right)\)
\(=b^2-\left[\left(c+a\right)^2-2ca\right]\)
\(=b^2-\left(c+a\right)^2+2ca\)
\(=\left(b-c-a\right)\left(b+c+a\right)+2ca\)
\(=2ac\)
Ta có: \(c^2-a^2-b^2\)
\(=c^2-\left(a^2+b^2\right)\)
\(=c^2-\left[\left(a+b\right)^2-2ab\right]\)
\(=c^2-\left(a+b\right)^2+2ab\)
\(=\left(c-a-b\right)\left(c+a+b\right)+2ab\)
\(=2ab\)
Ta có: \(M=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
\(=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)
\(=\dfrac{a^3+b^3+c^3}{2abc}\)
Ta có: \(a^3+b^3+c^3\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-cb+c^2\right)-3ab\left(a+b\right)\)
\(=-3ab\left(a+b\right)\)
Thay \(a^3+b^3+c^3=-3ab\left(a+b\right)\) vào biểu thức \(=\dfrac{a^3+b^3+c^3}{2abc}\), ta được:
\(M=\dfrac{-3ab\left(a+b\right)}{2abc}=\dfrac{-3\left(a+b\right)}{2c}\)
\(=\dfrac{-3\cdot\left(-c\right)}{2c}=\dfrac{3c}{2c}=\dfrac{3}{2}\)
Vậy: \(M=\dfrac{3}{2}\)
Phân tích thành nhân tử :
a). a(b2 + c2 + bc) + b(c2 + a2 + ac) + c(a2 + b2 + ab);
b). (a + b + c) (ab + bc + ca) - abc
c*). a(a + 2b)3 - b(2a + b)3.
c: Ta có: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)
\(=a^4-2a^3b+2ab^3-b^4\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)
\(=\left(a-b\right)^3\cdot\left(a+b\right)\)
Cho a,b,c>0 và a+b+c=3. Tìm GTNN của
a) M= a2/a+1 + b2/b+1 + c2/b+1
b) N= 1/a + 4/b+1 + 9/c+2
c) P= a2/a+b + b2/b+c + c2/c+a
d)Q= a4 + b4 + c4 + a2 + b2 + c2 +2020
a) Áp dụng Cauchy Schwars ta có:
\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c = 1
b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)
Dấu "=" xảy ra khi: x=y=1
c) \(P=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{9}{2.3}=\frac{3}{2}\)
Dấu "=" xảy ra khi: x=y=1
cho a,b,c là độ dài 3 cạnh tam giác.
a)a2/b2+b2/a2≥ a/b+b/a
b)a2/b+b2/a+c2/a≥ a+b+c
c)a2/(b+c)+b2/(a+c)+c2/(a+b)≥ (a+b+c)/2
cho a,b,c khác 0 ; a+b+c=0 tính a=1/(a2+b2-c2)+1/(b2+c2-a2)+1/(a2+c2-b2)
Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath
tvbobnokb' n
iai
ni;bv nn0