Bài 1: Tính tỉ số x:y biết
a) 5x - 2y/3x + 4y = 3/4
b) 2x + 3y/4x - y = 2/3
A,Tìm y biết 1+3y/5x =4+7y/15=1+2y/8
B, tìm x,y,z biết 2x=3y,7z=5x và 3x-7y+5z=80
C,cho 3x-2y/4=2z-4x/3=4y-3z/2 c/m x/2=y/3=z/4
D, cho a,b,c not=0 thỏa mãn a+b-c/c=b+c-a/a=c+a-b/b tính B= (1+b/d)(1+a/c)(1+c/b)
E, cho x/3=y/4,y/5= z/6 và 2x + 3y + 4z= 372 tính A = 3x + 4y+5z
G, tính Q=6b-5a/5a+6b
a,(3+1)(x-1)
b,5x(3x-2)
c,3x^2y+6xy^2-9xy):3xy
d,(3x^4-6x^3+4x^2):2x^y
e,(8x^4y^3-4x^3y^2+x^2y^2):2x^2y^2
bài 5 tìm bậc của các đa thức sau
a,A=3x^2y^4+5x^3+xy-3x^2y^4
b,B=7x^3y.(-4x^2y^2)+17x^2y^3-4x^2y+28x^2y^4
c,C=5x^4y^2-7x^3y^2.(-2xy^2)-5x^4y^2+x^3-14x^4y^4
a,A=3x^2y^4+5x^3+xy-3x^2y^4
A=5x3 +xy
=> bậc của A là 3
b,B=7x^3y.(-4x^2y^2)+17x^2y^3-4x^2y+28x^2y^4
=> bậc của B là 8
c,C=5x^4y^2-7x^3y^2.(-2xy^2)-5x^4y^2+x^3-14x^4y^4
C = 5x4y2 -7x3y2 (-2xy2) - 5x4y2 +x3 -14x4y4
C = 5x4y2 + 14x4y4 -5x4y2 +x3 -14x4y4
C = x3
=> Bậc của C là 3
a)(-6x^3y^4+4x^4y^3):2x^3y^3. b)(5x^4y^2-x^3y^2):x^3y^2. c)(27x^3y^5+9x^2y^4-6x^3y^3):(-3x^2y^3)
a: \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{-6x^3y^4}{2x^3y^3}+\dfrac{4x^4y^3}{2x^3y^3}\)
\(=-3y+2x\)
b: \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}=\dfrac{5x^4y^2}{x^3y^2}-\dfrac{x^3y^2}{x^3y^2}\)
\(=5x-1\)
c: \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=-\dfrac{27x^3y^5}{3x^2y^3}-\dfrac{9x^2y^4}{3x^2y^3}+\dfrac{6x^3y^3}{3x^2y^3}\)
\(=-9xy^2-3y+2x\)
a) \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{2x^3y^3\cdot\left(-3y+2x\right)}{2x^3y^3}\)
\(=-3y+2x\)
\(=2x-3y\)
b) \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}\)
\(=\dfrac{5x\cdot x^3y^2-x^3y^2\cdot1}{x^3y^2}\)
\(=\dfrac{x^3y^2\cdot\left(5x-1\right)}{x^3y^2}\)
\(=5x-1\)
c) \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot-9xy^2+-3x^2y^3\cdot-3y+-3x^2y^3\cdot2x}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot\left(-9xy^2-3y+2x\right)}{-3x^2y^3}\)
\(=-9xy^2-3x+2x\)
Bài 1: Tính tỉ số x:y. Biết
a) 2x + 3y/4x - y = 2/3
a) \(\frac{2x+3y}{4x-y}=\frac{2}{3}\)
\(=>\left(2x+3y\right).3=\left(4x-y\right).2\)
\(=>6x+9y=8x-2y\)
\(=>9y+2y=8x-6x\)
\(=>11y=2x\)
\(=>\frac{x}{y}=\frac{11}{2}\)
vay \(\frac{x}{y}=\frac{11}{2}\)
Bài 2:Cho 5x=8y Tìm x,y biết a) x+y=26 b)x-y=30 c)3x+2y=68 d) 4x-3y=34
bài :3Cho 2x+1/3=4y+3/9 Tìm x,y biết 3x-5y=18
Thả like nà-.-
bài 1
15x mũ 2 y mũ 2 z :3xyz
3x mũ 2 .(5x mũ 2-4x+3)
(2x mũ 2 -3x):(x-4)
-5xy (3x mũ 2y -5xy +y mũ 2)
(4 phấn 3y mũ 3 +2 phấn 3y mũ 2-1 phần 3).-3y mũ 2
(-2x mũ 3-1 phần 4y-4yz).8xy mũ 2
Bài 1:
a) Ta có: \(\left(15x^2\cdot y^2\cdot z\right):3xyz\)
\(=\dfrac{15x^2y^2z}{3xyz}\)
\(=5xy\)
b) Ta có: \(3x^2\cdot\left(5x^2-4x+3\right)\)
\(=3x^2\cdot5x^2-3x^2\cdot4x+3x^2\cdot3\)
\(=15x^4-12x^3+9x^2\)
c) Ta có: \(\left(2x^2-3x\right):\left(x-4\right)\)
\(=\dfrac{2x^2-8x+5x-20+20}{x-4}\)
\(=\dfrac{2x\left(x-4\right)+5\left(x-4\right)+20}{x-4}\)
\(=2x+5+\dfrac{20}{x-4}\)
d) Ta có: \(-5xy\cdot\left(3x^2y-5xy+y^2\right)\)
\(=-5xy\cdot3x^2y+5xy\cdot5xy-5xy\cdot y^2\)
\(=-15x^3y^2+25x^2y^2-5xy^3\)
Bài 1:Tìm x,y biết
a. 3x = 2y và 2x + y = 3
b. x/3 = 3y/4 và 3x - y = 4
c.4x = 5y và x + 2y = 3
d.3x =2y và 3x- y =1
e.2x=1y và 4x+y=6
f.x/3=3y/2 và x+6y=5
g.2x/5=y/6 và 5x+y=3
\(\hept{\begin{cases}3x=2y\\2x+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{3}{2}.x\\2x+\frac{3}{2}.x=3\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{3}{2}.x\\\frac{7}{2}.x=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{6}{7}\\y=\frac{9}{7}\end{cases}}}\)
\(\hept{\begin{cases}\frac{x}{3}=\frac{3y}{4}\\3x-y=4\end{cases}\Leftrightarrow\hept{\begin{cases}4x=9y\\3x-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9y}{4}\\\frac{3.9}{4}y-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9}{4}.y\\\frac{23}{4}.y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9}{4}.y\\y=\frac{16}{23}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{36}{23}\\y=\frac{16}{23}\end{cases}}}\)
Các phần sau làm tương tự nhé
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4: