chứng minh rằng:
a) 43^2 + 43.17 chia hết cho 60
b) 27^5 - 3^11 chia hết cho 80
Cmr:
a)43^2+43.17 chia hết cho 60
b)27^5-3^11 chia hết cho 80
a) 432 + 43.17 = 43.(43 + 17) = 43.60 chia hết cho 60
b) 275 - 311 = 315 - 311 = 311.(34 - 1) = 311.80 chia hết cho 80
a)432+43.17 chia hết cho 60 =43.60 chia hết cho 60
b)2725-311 chia hết cho 80 = 311 .80 : 80
_| cHI nHÂN 3.14|
CMR:
a) \(43^2+43.17\) Chia hết cho 60.
b) \(27^5-3^{11}\) Chia hết cho 80.
c) \(199^3-199\) Chia hết cho 200.
d) \(2^9-1\) Chia hết cho 73.
e) \(\left(n+3\right)^2-\left(n-1\right)^2\) Chia hết cho 8.
\(a;43^2+43.17=43\left(43+17\right)=43.60⋮60\left(đpcm\right)\)
\(b;27^5-3^{11}=3^{15}-3^{11}=3^{11}\left(3^4-1\right)=3^{11}.80⋮80\left(đpcm\right)\)
a)43^2+43.17=43(43+17)=43.60 chia het cho 60
b)27^5-3^11=3^15-3^11=3^11.(3^4-1)=3^11.80 chia het cho 80
nho k ung ho mik nhe
Bài 1: Chứng minh rằng tổng sau chia hết cho 7: A= 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^59 + 2^60
Bài 2: a) Cho A= 999993^1999 - 555557^1997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏ rằng: 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Bài 3: Chứng tỏ rằng: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào
1) Chứng minh rằng :
a) 432004 + 432005 chia hết cho 11
b) 273 + 95 chia hết cho 4
a)\(43^{2004}+43^{2005}\)
\(=43^{2004}+43^{2004}.43\)
\(=43^{2004}.\left(1+43\right)\)
\(=43^{2004}.44\)
\(=43^{2004}.4.11\)chia het cho 11
b)\(27^3+9^5\)
\(=3^9+3^{10}\)
\(=3^9\left(1+3\right)\)
\(=3^9.4\)chia het cho 4
a)
Ta có :
A = 432004 + 432005 = 432004 . ( 1 + 43 ) = 432004 . 44
Có : 44 \(⋮\)11
=> A chia hết cho 11
=> ĐPCM
b)
Ta có :
B = 273 + 95 = 39 + 310 = 39 . ( 1 + 3 ) = 39 . 4
Có :
4\(⋮\)4
=> B \(⋮\)4
=> ĐPCM
nha !!!
\(43^{2004}+43^{2005}\)
\(=43^{2004}.1+43^{2004}.43\)
\(=43^{2004}.\left(1+43\right)\)
\(=43^{2004}.44⋮11\)
Chứng minh rằng
a) ( 2m -3 )× (3n -2 ) - (3m- 2 )× (2n - 3 ) chia hết cho 5 với mọi nguyên tố m, n
b) 432011 + 432010 chia hết cho 11
c) 273 + 95 chia hết cho 4
Giúp mình với.
Mình đang cần gấp lắm
làm ơn giúp mình trả lời nha,có gì mình cảm ơn trước
chứng minh rằng
a)(432004+432005) chia hết cho 11
b)(273+95) chia hết cho 4
Ta có :
(432004 + 432005) = 432004 x (1 + 43) = 432004 x 44
Vì 44 chia hết cho 11 nên 432004 x 44 chia hết cho 11 hay (432004 + 432005) chia hết cho 11 (ĐPCM)
Ủng hộ mk nha ^ ~ ^
b) Ta có:
273 + 95 = (33)3 + (32)5 = 39 + 310 = 39 x (1 + 3) = 39 x 4
Vì 4 chia hết cho 4 nên 39 x 4 chia hết cho 4 hay (273 + 95) chia hết cho 4 (ĐPCM)
Xin lổi vì đã làm thiếu nhg nhớ ủng hộ mk nha cảm ơn nhìu !!!
chứng minh rằng :
a) 7^6+7^5- 7^4 chia hết cho 11
b) 10^9 + 10^8 + 10^7 chia hết cho 22^2
c) 81^7 - 27^9 - 9^13 chia hết cho 45
d) 24^54 .54^24 . 2^10 chia hết cho 72^63
cho A= 2+2^2+2^3+.......+2^60
CTR: A chia hết cho 3 , A chia hết cho 7 , A chia hết cho 5
chứng minh rằng :
a) 7^6+7^5- 7^4 chia hết cho 11
b) 10^9 + 10^8 + 10^7 chia hết cho 22^2
c) 81^7 - 27^9 - 9^13 chia hết cho 45
d) 24^54 .54^24 . 2^10 chia hết cho 72^63
cho A= 2+2^2+2^3+.......+2^60
CTR: A chia hết cho 3 , A chia hết cho 7 , A chia hết cho 5
a)76+75-74=74(72+7-1)=74*55=74*11*5
Vì 11 chia hết cho 11 nên 11*74*5 chia hết cho 11 hay 76+75-74 chia hết cho 11
b)109+108+107=107(102+10+1)=107*111 hình như câu này đâu có chia hết
c)817-279-913=328-327-326=326(32-3-1)=326*5=324*9*5=324*45
Vì 45 chia hết cho 45 nên 324 chia hết cho 45 hay 817-279-913 chia hết cho 45
nhiều quá mk phụ bạn một số câu thôi
chứng minh rằng :
a) 7^6+7^5- 7^4 chia hết cho 11
b) 10^9 + 10^8 + 10^7 chia hết cho 22^2
c) 81^7 - 27^9 - 9^13 chia hết cho 45
d) 24^54 .54^24 . 2^10 chia hết cho 72^63
cho A= 2+2^2+2^3+.......+2^60
CTR: A chia hết cho 3 , A chia hết cho 7 , A chia hết cho 5
a) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.\left(49+7-1\right)=7^4.55\)
Ta có: 55 chia hết cho 11
Nên \(7^4.55\)chia hết cho 11
Hay \(7^6+7^5-7^4\)chia hết cho 11
Câu b,c làm tương tự