tìm x: 3x^3-75x=0
tìm x: 3x3-75x=0
: Tìm x, biết: |75x+23|=|3x−1||75x+23|=|3x−1| ?
<=> 75x+23 = 3x-1 or 75x+23 = -(3x-1)
<=> x = -1/3 or x = -11/39
Giải phương trình
a, (x^2-2)(x^2+x+1)=0
b, 16x^2 - 8x + 5=0
c, 2x^3 - x^2 - 8x + 4=0
d, 3x^3+6x^2 - 75x -150 = 0
e, 2x^5-3x^4+6x^3-8x^2+3=0
*vn:vô nghiệm.
a. \(\left(x^2-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
-Vậy \(S=\left\{\pm\sqrt{2}\right\}\).
b. \(16x^2-8x+5=0\)
\(\Leftrightarrow16x^2-8x+1+4=0\)
\(\Leftrightarrow\left(4x-1\right)^2+4=0\) (vô lí)
-Vậy S=∅.
c. \(2x^3-x^2-8x+4=0\)
\(\Leftrightarrow x^2\left(2x-1\right)-4\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\pm2\end{matrix}\right.\)
-Vậy \(S=\left\{\dfrac{1}{2};\pm2\right\}\).
d. \(3x^3+6x^2-75x-150=0\)
\(\Leftrightarrow3x^2\left(x+2\right)-75\left(x+2\right)=0\)
\(\Leftrightarrow3\left(x+2\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow3\left(x+2\right)\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\pm5\end{matrix}\right.\)
-Vậy \(S=\left\{-2;\pm5\right\}\)
1) x(x-3)-2x(x-3)=0
2) x(3x-1)-5(1-3x)=0
3) 5(x+3)-2x(3x+3)=0
4) 4x(x+3)-x-3=0
5) x3+15x2+75x+125=0
6) 4x2-12x+9=0
7) x2-16x+60=0
8) x3+48x=12x2+64
1,=\(x^2-3x-2x^2+6x=-x^2+3x\)
2,=\(3x^2-x-5+15x=3x^2+14x-5\)
3,=\(5x+15-6x^2-6x=-6x^2-x+15\)
4,=\(4x^2+12x-x-3=4x^2+11x-3\)
5: =>(x+5)^3=0
=>x+5=0
=>x=-5
6: =>(2x-3)^2=0
=>2x-3=0
=>x=3/2
7: =>(x-6)(x-10)=0
=>x=10 hoặc x=6
8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)
=>(x-4)^3=0
=>x-4=0
=>x=4
Tim x biet
a) 28x^3+15x^2+75x+125=0
b)4x^2-x-5=0
Phan tich da thuc thanh nhan tu
a) x^3+5x^2+3x-9
b)x^3-7x-6
c)3x^3-7x^2+17x-5
\(b,4x^2-x-5=0\)
\(\Leftrightarrow4x^2-5x+4x-5=0\)
\(\Leftrightarrow x\left(4x-5\right)+4x-5=0\)
\(\Leftrightarrow\left(4x-5\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{4}\end{cases}}\)
Bài 2
\(a,x^3+5x^2+3x-9\)
\(\Leftrightarrow x^3-x^2+6x^2-6x+9x-9\)
\(\Leftrightarrow x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+6x+9\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)^2\)
b,\(x^3-7x-6\)
\(\Leftrightarrow x^3-3x^2+3x^2-9x+2x-6\)
\(\Leftrightarrow x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+2\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)\)
c,\(3x^3-7x^2+17x-5\)
\(\Leftrightarrow3x^3-x^2-6x^2+2x+15x-5\)
\(\Leftrightarrow x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-2x+5\right)\)
\(4x^2-x-5=0\)
<=> \(4x^2+4x-5x-5=0\)
<=> \(4x\left(x+1\right)-5\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(4x-5\right)=0\)
tự lm tiếp
Tim x biet
a) 28x^3+15x^2+75x+125=0
b)4x^2-x-5=0
Phan tich da thuc thanh nhan tu
a) x^3+5x^2+3x-9
b)x^3-7x-6
c)3x^3-7x^2+17x-5
Bài 1:
a)\(28x^3+15x^2+75x+125=0\)
\(\Leftrightarrow\left(4x+5\right)\left(7x^2-5x+25\right)=0\)
Dễ thấy: \(7x^2-5x+25=7\left(x-\frac{5}{14}\right)^2+\frac{675}{28}>0\)
\(\Rightarrow4x+5=0\Rightarrow x=-\frac{5}{4}\)
b)\(4x^2-x-5=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-5\right)=0\)
\(\Rightarrow x=-1;x=\frac{5}{4}\)
Bài 2:
a)\(x^3+5x^2+3x-9\)
\(=\left(x-1\right)\left(x+3\right)^2\)
b)\(x^3-7x-6\)
\(=\left(x-3\right)\left(x+1\right)\left(x+2\right)\)
c)\(3x^3-7x^2+17x-5\)
\(=\left(3x-1\right)\left(x^2-2x+5\right)\)
\(4x^2-x-5=0\)
<=> \(4x^2+4x-5x-5=0\)
<=> \(4x\left(x+1\right)-5\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(4x-5\right)=0\)
tự giải nốt
Chứng minh rằng A lớn hơn hoặc bằng 0 vs mọi x,y khác 0
A=(75x^5 y^2-45x^4 y^3) : 3x^3 y^2-(5/2 xy^4-2xy^5) : 1/2xy^3
104. Giải các phương trình:
a) \(2x^3-x^2-8x+4=0\)
b) \(3x^3+6x^2-75x-150=0\)
c) \(2x^5-3x^4+6x^3-8x^2+3=0\)
b)\(3x^3+6x^2-75x-150=0\Leftrightarrow3\left(x^3+2x^2-25x-50\right)=0\Leftrightarrow x^3+2x^2-25x-50=0\)
<=>\(x^2\left(x+2\right)-25\left(x+2\right)=0\Leftrightarrow\left(x^2-25\right)\left(x+2\right)=0\Leftrightarrow\left(x-5\right)\left(x+5\right)\left(x+2\right)=0\)
<=>x-5=0 hoặc x+5=0 hoặc x+2=0<=>x=5 hoặc x=-5 hoặc x=-2
c)\(2x^5-3x^4+6x^3-8x^2+3=0\Leftrightarrow2x^5+x^4-4x^4-2x^3+8x^3+4x^2-12x^2+3=0\)
<=>\(x^4\left(2x+1\right)-2x^3\left(2x+1\right)+4x^2\left(2x+1\right)-3\left(4x^2-1\right)=0\)
<=>\(x^4\left(2x+1\right)-2x^3\left(2x+1\right)+4x^2\left(2x+1\right)-3\left(2x-1\right)\left(2x+1\right)=0\)
<=>\(\left(2x+1\right)\left(x^4-2x^3+4x^2-6x+3\right)=0\)
<=>\(\left(2x+1\right)\left(x^4-2x^3+x^2+3x^2-6x+3\right)=0\)
<=>\(\left(2x+1\right)\left[x^2\left(x^2-2x+1\right)+3\left(x^2-2x+1\right)\right]=0\)
<=>\(\left(2x+1\right)\left(x^2+3\right)\left(x^2-2x+1\right)=0\Leftrightarrow\left(2x+1\right)\left(x^2+3\right)\left(x-1\right)^2=0\)
Vì \(x^2\ge0\Rightarrow x^2+3\ge3>0\Rightarrow\orbr{\begin{cases}2x+1=0\\\left(x-1\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)
a) 2x3 - x2 - 8x + 4 = 0
x2.(2x - 1) - 4.(2x - 1) = 0
(x2 - 4)(2x - 1) = 0
\(\Rightarrow\orbr{\begin{cases}x^2-4=0\\2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x=\frac{1}{2}\end{cases}}\)
Với x2 = 4
=> x = 2 hoặc x = -2
=> x = {-2 ; 2 ; \(\frac{1}{2}\))
a) x2(2x-1) - 4(2x-1) = 0 <=> (2x-1)(x2- 4)=0 <=> x=\(\frac{1}{2}\)hay x=-2 hay x= 2
Viết mỗi tập hợp sau bằng cách liệt kê các phần tử:
a) A = { \(x\in R\) | \(\left(2x-x^2\right)\left(2x^2-3x-2\right)=0\)
b) B = { \(n\in N\) | \(3< n^2< 30\) }
c) C = { \(x\in Z\) | \(2x^2-75x-77=0\) }