Cho a+b> 8 và \(b\ge3\) . cm :27a2+10b3 >945
1, Cho a,b,c,n,m,p thỏa mãn : ap-2bn+cm=0 và ac-b2=0.
Chứng minh mp-n2\(\le\)0
2, Cho \(a\ge3,b\ge3;a^2+b^2\ge25\)thì \(a+b\ge7\)
3, Cho a3 + b3 =2 . Chứng minh \(a+b\le2\)
Bài 2:
Đặt \(a=3+x\)và \(b=3+y\)thì \(x,y\ge0\). Ta có : \(a+b=6+\left(x+y\right)\).
Ta cần chứng minh \(x+y\ge1\)
Ví dụ \(x+y< 1\)thì \(x^2+2xy+y^2< 1\)nên \(x^2+y^2< 1\)
\(\Leftrightarrow a^2+b^2=\left(x+3\right)^2+\left(y+3\right)^2=18+6\left(x+y\right)+\left(x^2+y^2\right)< 18+6+1=25\)
Điều này ngược với giả thiết ở đề bài \(ầ^2+b^2\ge25\)
Vậy \(x+y\ge1\)\(\Leftrightarrow a+b\ge7\left(dpcm\right)\)
tk mk nka !!!
Cho a+b+c=3.cm: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
a,b,c phải dương thì đề bài mới đúng.
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge3.3\)(vì a+b+c=3)
\(\Leftrightarrow1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1\ge9\)
\(\Leftrightarrow\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge6\)(1)
Mặt khác, \(\frac{x}{y}+\frac{y}{x}\ge2\forall x;y>0\)
Do đó bất đẳng thức (1) đúng mà các phép biến đổi trên là tương đương nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
Chúc bạn học tốt.
Trong các số 35; 8; 57; 660; 4674; 3000; 945; 5553 :
a) Số nào chia hết cho 5?
b) Số nào không chia hết cho 5 ?
a) Các số chia hết cho 5 là: 35; 660; 3000; 945.
b) Các số không chia hết cho 5 là: 8; 57; 4674; 5553.
Trong các số 35; 8; 57; 660; 4674; 3000; 945; 5553:
a) Số nào chia hết cho 5?
b) Số nào không chia hết cho 5?
a) Các số chia hết cho 5 là: 35; 660; 3000; 945.
b) Các số không chia hết cho 5 là: 8; 57; 4674; 5553.
Cho a,b,c lớn hơn 0, ab=1 CM:
\(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}\ge3\)
Theo bất đẳng thức Cô-Si ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}=\frac{a+b}{ab}+\frac{2}{a+b}=a+b+\frac{2}{a+b}=\frac{a+b}{2}+\left(\frac{a+b}{2}+\frac{2}{a+b}\right)\)
\(\ge\sqrt{ab}+2\sqrt{\frac{a+b}{2}\cdot\frac{2}{a+b}}=1+2=3.\) (ĐPCM)
Cho a,c,b dương t/m a+b+c+ab+bc+ac = 6abc
CM: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge3\)
a+b+c+ab+bc+ca=6abc \(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=6\)
Đặt \(A=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
Ta có: \(\left(\dfrac{1}{a}-\dfrac{1}{b}\right)^2\ge0\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge\dfrac{2}{ab}\)
CMTT: \(\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{2}{bc};\dfrac{1}{c^2}+\dfrac{1}{a^2}\ge\dfrac{2}{ca}\)
Ta có: \(\left(\dfrac{1}{a}-1\right)^2\ge0\Leftrightarrow\dfrac{1}{a^2}+1\ge\dfrac{2}{a}\)
CMTT: \(\dfrac{1}{b^2}+1\ge\dfrac{2}{b};\dfrac{1}{c^2}+1\ge\dfrac{2}{c}\)
\(3A+3\ge2.\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=2.6=12\)
<=> A + 1 \(\ge4\Leftrightarrow A\ge3\) (đpcm)
Cho a,c,b dương t/m a+b+c+ab+bc+ac = 6abc
CM : \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
a+b+c+ab+bc+ac = 6abc \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Cmtt : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\)
Ta có : \(\left(\frac{1}{a}-1\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+1\ge\frac{2}{a}\)
Cmtt : \(\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)
\(3A+3\ge2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2.6=12\)
\(\Leftrightarrow A+1\ge4\Leftrightarrow A\ge3\left(đpcm\right)\)
Chúc bạn học tốt !!!
Cho a,b,c thuộc R
CM: \(\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\ge3\left(a+b+c\right)^2\)
Ta có
\(\left(a^2+2\right)\left(b^2+2\right)=\left(a^2+1\right)\left(b^2+1\right)+a^2+b^2+3\ge\left(a+b\right)^2+\frac{\left(a+b\right)^2}{2}+3=\frac{3}{2}\left[\left(a+b\right)^2+2\right]\)
\(\Rightarrow VT\ge\frac{3}{2}\left[\left(a+b\right)^2.c^2+4+2\left(a+b\right)^2+2c^2\right]\)
\(\ge\frac{3}{2}\left[4\left(a+b\right)c+2\left(a+b\right)^2+2c^2\right]=VP\)
=> ĐPCM
Dấu "=" xảy ra khi
\(a=b=c=\frac{\pm1}{\sqrt{2}}\)
Đề PBC 2015-2016 nè
Cho a + b +c =3 , a, b, c dương
CM
\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
Bài này đăng nhiều rồi bạn vào câu hỏi tương tự tìm
Sử dụng kĩ thuật Cauchy ngược dấu
Ta có: \(\frac{a+1}{b^2+1}=\frac{ab^2+a+b^2+1-ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b\left(a+1\right)}{2}\)
Tương tự \(\frac{b+1}{c^2+1}\ge b+1-\frac{c\left(b+1\right)}{2}\)
\(\frac{c+1}{a^2+1}\ge c+1-\frac{a\left(c+1\right)}{2}\)
\(\Rightarrow VT\ge3-\frac{a+b+c-ab-bc-ca}{2}\ge3\)
Dấu "=" xảy ra khi a=b=c=1