Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 7 2018 lúc 2:17

Khánh Ngân Nguyễn
Xem chi tiết
Lucchiki
Xem chi tiết
Trần Mạnh
18 tháng 2 2021 lúc 21:06

 a) 3x2 – 7x + 2

\(=3x^2-6x-x+2\)

\(=\left(3x^2-6x\right)-\left(x-2\right)\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

 b) a(x2 + 1) – x(a2 + 1)

\(=ax^2+a-\left(a^2x+x\right)\)

\(=a\left(x^2+1\right)-x\left(a^2+1\right)\)

.......?

 

 

 

 

Nguyễn Lê Phước Thịnh
18 tháng 2 2021 lúc 21:10

a) Ta có: \(3x^2-7x+2\)

\(=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

b) Ta có: \(a\left(x^2+1\right)-x\left(a^2+1\right)\)

\(=x^2a+a-a^2x-x\)

\(=\left(x^2a-a^2x\right)+\left(a-x\right)\)

\(=xa\left(x-a\right)-\left(x-a\right)\)

\(=\left(x-a\right)\left(xa-1\right)\)

c) Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)^2+16\left(x^2+7x\right)+6\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)\left(x^2+7x+16\right)+6\left(x^2+7x+16\right)\)

\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)

d) Ta có: \(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)

\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)^2+12\left(a^2+8a\right)+10\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)\left(a^2+8a+12\right)+10\left(a^2+8a+12\right)\)

\(=\left(a^2+8a+12\right)\left(a^2+8a+10\right)\)

\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)

Minh Võ
Xem chi tiết
Nguyễn Thị MInh Huyề
Xem chi tiết
Nguyễn Minh Đăng
24 tháng 7 2020 lúc 15:37

Bài làm:

a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(x^2+5x+5=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)

\(=\left(x^2+5x+5\right)^2\)

b) Tương tự như a phân tích và đặt ra được: \(t^2-1-24=t^2-25=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)

c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+11=t\)\(\Rightarrow\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1\)

\(=\left(t-1\right)\left(t+1\right)=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)

d) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x+11=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)-24=t^2-1-24=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

Khách vãng lai đã xóa
KCLH Kedokatoji
24 tháng 7 2020 lúc 15:39

Làm mẫu cho 1 vd:

a, (x+1)(x+2)(x+3)(x+4)+1

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)(1)

Đặt \(y=x^2+5x+5\)

Khi đó ::

(1) = \(\left(y-1\right)\left(y+1\right)+1\)

\(=y^2-1+1=y^2\)

Thay vào ta được: \(\left(x^2+5x+5\right)^2\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
24 tháng 7 2020 lúc 20:21

a) (x+1)(x+2)(x+3)(x+4)+1=[(x+1)(x+4)].[(x+2)(x+3)]+1=(x2+5x+4)(x2+5x+6)+1

đặt t=x2+5x+5 ta có đa thức (t-1)(t+1)+1=t2-1+1=t2. mà t=x2+5x+5

=> (x+1)(x+2)(x+3)(x+4)+1=(x2+5x+5)2

b) (x+1)(x+2)(x+3)(x+4)-24. theo kết quả câu (a) ta được (x+1)(x+2)(x+3)(x+4)=(x2+5x+4)(x2+5x+6)

đặt t=x2+5x+5 ta có đa thức (t-1)(t+1)-24=t2-1-24=t2-25=(t-5)(t+5)

mà t=x2+5x+5 => (t-5)(t+5)=(x2+5x)(x2+5x+10)

c) (x+1)(x+3)(x+5)(x+7)+15=[(x+1)(x+7)].[(x+3)(x+5)]+15=(x2+8x+7)(x2+8x+15)+15

đặt x2+8x+11=t ta có đa thức (t-4)(t+4)+15=t2-16+15=t2-1=(t-1)(t+1)

mà t=x2+8x+11 => (t-1)(t+1)=(x2+8x-10)(x2+8x+12)

d) (x+2)(x+3)(x+4)(x+5)-24=[(x+2)(x+5)][(x+3)(x+4)]-24=(x2+7x+12)(x2+7x+10)-24

đặt t=x2+7x+11 ta có đa thức (t-1)(t+1)-24=t2-1-24=t2-25=(t+5)(t-5)

mà t=x2+7x+11 => (t-5)(t+5)=(x2+7x+6)(x2+7x+16)

Khách vãng lai đã xóa
Đoàn Phan Hưng
Xem chi tiết
Luongg
Xem chi tiết
Đường Quỳnh Giang
3 tháng 9 2018 lúc 9:56

Gợi ý:

a)  Đặt    \(t=x^2+x+1\)

b)  Đặt    \(t=x^2+8x+11\)

c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt:   \(t=x^2+7x+11\)

phan gia huy
Xem chi tiết
OoO Kún Chảnh OoO
4 tháng 9 2017 lúc 15:25

a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24 
= (x+2)(x+5)(x+3)(x+4)-24 
= (x^2+7x+10)(x^2+7x+12)-24 
Đặt x^2+7x+11 = a thay vào A ta được : 
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2) 
Thế a vào (2) ta được : 
A=(x^2+7x+11-5)(x^2+7x+11+5) 
= (x^2+7x+6)(x^2+7x+16) 

b)  = (x2+8x+7)(x2+8x+15)+15

        Đặt X=x2+8x+11

   f(x) = (X-4)(X+4)+15

         = X2-16+15

         = X2-12

         = (X-1)(X+1)

=> f(x)= (x2+8x+11-1)(x2+8x+11+1)

     f(x) = (x2+8x+10)(x2+8x+12)

Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:

     f(x) = (x2+8x+10)(x2+8x+12)

           = (x2+8x+10)[(x2+2x)+(6x+12)]

           = (x2+8x+10)[x(x+2)+6(x+2)]

           = (x+2)(x+6)(x2+8x+10)

   d)  2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)

Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1  nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)

Vậy 2x4 - 3x3 - 7x2 + 6x + 8  = (x-2)(x+1)(2x2-x-4)

Trần Phú
4 tháng 9 2017 lúc 15:53

  a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

 \(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)

 \(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)

 \(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)

 \(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)

 \(=\left(x^2+x-1\right)^2-1=24\)

 \(=\left(x^2+x-1\right)^2=25\)

   xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé

Lưu Đức Mạnh
4 tháng 9 2017 lúc 17:32

c) \(x^3+4x^2+5x+2\)

\(=x^3+x^2+3x^2+3x+2x+2\)

\(=x^2\left(x+1\right)+3x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+3x+2\right)\)

\(=\left(x+1\right)\left(x^2+x+2x+2\right)\)

\(=\left(x+1\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)

\(=\left(x+1\right)\left(x+2\right)\)

Vũ Thùy Linh
Xem chi tiết
Đinh Tuấn Việt
12 tháng 10 2015 lúc 22:52

(x^2+5x+4)(x^2+5x+6)-24 

Đặt x^2+5x+5 = a 

Do đó (a-1)(a+1)-24

= a^2- 25

= a^2-5^2 =(a-5)(a+5)

= ( x^2+5x+5-5)( x^2+5x+5+5)

= ( x^2+5x)( x^2+5x+10) 

Nguyễn Đình Dũng
12 tháng 10 2015 lúc 22:53

Đinh Tuấn Việt : lạc đề

Đinh Tuấn Việt
12 tháng 10 2015 lúc 22:54

lạc đề gì ?           

Phạm Trần Hồng Phúc
Xem chi tiết
Hoàng Nhật Ánh
25 tháng 8 2017 lúc 20:22

b)\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-24\)4

\(=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]-24\)

\(=\left(x^2-4x-x+4\right)\left(x^2-3x-2x+6\right)-24\)

\(=\left(x^2-5x+4\right)\left(x^2-5x+4+2\right)-24\)

\(\)Đặt  \(x^2-5x+4\)là a,ta có

\(=a\left(a+2\right)-24\)

\(=a^2+2a-24\)

\(=a^2+6a-4a-24\)

\(=a\left(a+6\right)-4\left(a+6\right)\)

\(=\left(a+6\right)\left(a-4\right)\)

Hay  \(\left(x^2-5x+4+6\right)\left(x^2-5x+4-4\right)\)

\(=\left(x^2-5x+10\right)\left(x^2-5\right)\)

✓ ℍɠŞ_ŦƦùM $₦G ✓
5 tháng 6 2018 lúc 20:55

Câu hỏi của Huỳnh Bảo Nguyên - Toán lớp 8 - Học toán với OnlineMath

Mk làm òi nhé !