Tìm các số x, y , z biết rằng : x : 2 = y : 3 = z : 2 và x - 2y + 3z = 4
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
Tìm ba số x,y,z biết rằng: \(\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{4}\) và x+2y – 3z = -12
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{4} = \dfrac{{x + 2y - 3z}}{{2 + 2.3 - 3.4}} = \dfrac{{ - 12}}{{ - 4}} = 3\\ \Rightarrow x = 3.2 = 6\\y = 3.3 = 9\\z = 3.4 = 12\end{array}\)
Vậy x = 6, y = 9, z = 12.
Tìm các số x,y,zTìm x,y,z biết x-1/2=y-2/3=z-3/4 và x-2y-3z=14
Tìm các số x, y, z biết:
x-1/2=y-2/3=z-3/4 và x+2y+3z=14
http://olm.vn/hoi-dap/question/173169.html
tick nhé bạn
Tìm các số có x, y, z biết :
x/2 = 2y/3 = 3z/4 và x X y X z = -108
\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\Rightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=k\Rightarrow\hept{\begin{cases}x=2k\\y=\frac{3}{2}k\\z=\frac{4}{3}k\end{cases}}\)
Mà xyz = -108 => \(2k\cdot\frac{3}{2}k\cdot\frac{4}{3}k=-108\Rightarrow4k^3=-108\Rightarrow k^3=-27\Rightarrow k=-3\)
\(\Rightarrow\hept{\begin{cases}x=2.\left(-3\right)=-6\\y=\frac{3}{2}.\left(-3\right)=\frac{-9}{2}\\z=\frac{4}{3}.\left(-3\right)=-4\end{cases}}\)
Vậy x = -7, y = -9/2 , z = -4
tìm các số x,y,z biết rằng x/2=2y/3=3z/4 vả xyz=-108
Đặt \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=t\Leftrightarrow\hept{\begin{cases}x=2t\\y=\frac{3}{2}t\\z=\frac{4}{3}t\end{cases}}\)
\(xyz=2t.\frac{3}{2}t.\frac{4}{3}t=4t^3=-108\Leftrightarrow t^3=-27\Leftrightarrow t=-3\)
\(\Leftrightarrow\hept{\begin{cases}x=2.\left(-3\right)=-6\\y=\frac{3}{2}.\left(-3\right)=-\frac{9}{2}\\z=\frac{4}{3}.\left(-3\right)=-4\end{cases}}\)
Tìm các số x, y biết
x=y/2=z/3 và 4x-3y+2z=36
x-1/2=y-2/3=z-3/4 và x-2y+3z=14
tìm các số x,y,z biết x : y : z = 3 : 4 : 5và 2x^2 + 2y^2 - 3z^2
Thử nha ! sai xin lỗi bn !
Theo tỉ lệ ta cs
\(x:y:z=3:4:5\Rightarrow\frac{x}{\frac{y}{z}}=\frac{3}{\frac{4}{5}}\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2+2y^2-3z^2}{3^2+4^2+5^2}=\frac{2x^2+2y^2-3z^2}{50}\)
đến đây bn xem lại đề nha !
bài 1 : tìm các số x, y , z , t biết :
x/2 = y/3 ; 7x = 2t ; z/t = 5/7 và y+ 2z + 3t = 10z
bài 2 : tìm các số x , y biết a , x:y = 4:7 và x +y = 44
b, x/2 = y/5 và x + y = 28
bài 3 : cho M = x + 2y - 3z / x - 2y + 3z . tính giá trị của M biết x ,y , z tỉ lệ với 5 ; 4 ; 3
bài 4 : cho a/b = c/d . chứng minh a+3b/b = c+3d/d
( các tỉ số đều có nghĩa )
làm nhanh cho mình 4 bài này với
cảm ơn các friends nhiều
Bài 4:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)
\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)
Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)
Bài 2:
a: x:y=4:7
=>\(\dfrac{x}{4}=\dfrac{y}{7}\)
mà x+y=44
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)
=>\(x=4\cdot4=16;y=4\cdot7=28\)
b: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)
=>\(x=4\cdot2=8;y=4\cdot5=20\)
Bài 3:
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)
=>x=5k; y=4k; z=3k
\(M=\dfrac{x+2y-3z}{x-2y+3z}\)
\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)
\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)
Tìm các số x,y,z biết x/2=y/3=z/4 và x2+2y2-3z2=-650
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}}\)
Khi đó x2 + 2y2 - 3z2 = -650
<=> (2k)2 + 2(3k)2 - 3(4k)2 = -650
<=> 4k2 + 18k2 - 48k2 = -650
<=> -26k2 = -650
<=> k2 = 25
<=> k = \(\pm5\)
Khi k = 5 => x = 10 ; y = 15 ; z = 20 ;
Khi k = -5 => x = -10 ; y = -15 ; z = -20
Vậy các cặp (x;y;z) tìm được là (10;15;20) ; (-10 ; -15 ;-20)
Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x^2}{4}=\frac{2y^2}{18}=\frac{3z^2}{48}=\frac{x^2+2y^2-3z^2}{4+18-48}=\frac{650}{26}=25\)
\(\Rightarrow\hept{\begin{cases}x=25.2=50\\y=25.3=75\\z=25.4=100\end{cases}}\)
Vậy \(\left(x;y;z\right)=\left(50;75;100\right)\)
Cảm ơn nhiều~~~