Tìm x € z để biểu thức nhận gtrị nguyên:
a) A=2x+2/x-3
b) B=2x2+x-5/2x+1
Tìm x € z để biểu thức nhận gtrị nguyên:
a) A=x+4/x-3
b) B=4x2-4x+10/2x+1
a) \(A=\dfrac{x+4}{x-3}=\dfrac{x-3+7}{x-3}=\dfrac{x-3}{x-3}+\dfrac{7}{x-3}\)
\(=1+\dfrac{7}{x-3}\)
Để A \(\in Z\) \(\Leftrightarrow\dfrac{7}{x+3}\in Z\) \(\Leftrightarrow\left(x-3\right)\inƯ\left(7\right)\)
\(\Leftrightarrow\left(x-3\right)\in\left\{-7;-1;1;7\right\}\)
\(\Leftrightarrow x\in\left\{-4;2;4;10\right\}\)
b) \(B=\dfrac{4x^2-4x+10}{2x+1}=\dfrac{\left(4x^2-4x+3\right)+7}{2x+1}\)
\(=\dfrac{4x^2-4x+3}{2x+1}+\dfrac{7}{2x+1}\)\(=\left(2x-3\right)+\dfrac{7}{2x+1}\)
<=> Để B thuộc Z <=> \(\left(2x-3\right)+\dfrac{7}{2x+1}\) thuộc Z
<=> \(\dfrac{7}{2x+1}\in Z\) <=> \(\left(2x+1\right)\inƯ\left(7\right)\)
<=> \(\left(2x+1\right)\in\left\{-7;-1;1;7\right\}\)
<=> \(x\in\left\{-4;-1;0;3\right\}\) (t/m)
Vậy..................
Bài 1:tìm x để phép chia ko dư:
a) (2x3-6x+x2+5):(x+x2-3)
b) ( 2x4+2x3+3x2+4x-3):(x2+1)
Bài 2: tìm x€z để biểu thức nhận gtrị nguyên:
a) A=2x+2/x-3
b) B=2x2+x-5/2x+1
1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z để (A,B)thuộc Z
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0
3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B b)tìm x để B=3/2 c) tìm giá trị nguyên của x để B có giả trị nguyên
4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1 d) tìm giá trị nhỏ nhất của biểu thức C
5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
bạn viết thế này khó nhìn quá
nhìn hơi đau mắt nhá bạn hoa mắt quá
Cho biểu thức : B= \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{7x+3}{9-x^2}\)
a) Rút gọn B.
b) Tính giá trị của biểu thức B tại x thoả mãn: |2x + 1| = 7
c) Tìm x để B = \(-\dfrac{3}{5}\)
d) Tìm x nguyên để biểu thức B nhận giá trị nguyên.
a)B = \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{7x+3}{9-x^2}\left(ĐK:x\ne\pm3\right)\)
= \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{7x+3}{x^2-9}\)
= \(\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-7x-3}{\left(x+3\right)\left(x-3\right)}\)
= \(\dfrac{3x^2-9x}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x+3}\)
b) \(\left|2x+1\right|=7< =>\left[{}\begin{matrix}2x+1=7< =>x=3\left(L\right)\\2x+1=-7< =>x=-4\left(C\right)\end{matrix}\right.\)
Thay x = -4 vào B, ta có:
B = \(\dfrac{-4.3}{-4+3}=12\)
c) Để B = \(\dfrac{-3}{5}\)
<=> \(\dfrac{3x}{x+3}=\dfrac{-3}{5}< =>\dfrac{3x}{x+3}+\dfrac{3}{5}=0\)
<=> \(\dfrac{15x+3x+9}{5\left(x+3\right)}=0< =>x=\dfrac{-1}{2}\left(TM\right)\)
d) Để B nguyên <=> \(\dfrac{3x}{x+3}\) nguyên
<=> \(3-\dfrac{9}{x+3}\) nguyên <=> \(9⋮x+3\)
x+3 | -9 | -3 | -1 | 1 | 3 | 9 |
x | -12(C) | -6(C) | -4(C) | -2(C) | 0(C) | 6(C) |
Cho A= x^2-2x+1/x^2-1 a)Tìm đk xác định của x để biểu thức A xác định b) Rút gọn biểu thức A c) Tìm x thuộc Z để biểu thức A nhận giá trị nguyên
a: ĐKXĐ: x<>1; x<>-1
b: \(A=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
c: Để A nguyên thì x+1-2 chia hết cho x+1
=>\(x+1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{0;-2;-3\right\}\)
Cho biểu thức A= [2x/2x(x-1)+3-3x - 5/2x-3 ] : 5-3x/1-x
a) tìm x để biểu thức A có nghĩa và rút gọn A
b) Chứng minh rằng với mọi x để A có nghĩa thì biểu thức M= 2/x2+2 - 1/3-2x + A chỉ nhận đúng 1 giá trị nguyên
Bài 17.Cho phân thức: A=2x-1/x^2-x
a. Tìm điều kiện để giá trị của phân thức được xác định.
x^2 - x # 0
<=> x ( x - 1 ) # 0
<=> x # 0
<=> x -1 # 0 => x # 1
b. Tính giá trị của phân thức khi x = 0 và khi x = 3.
Nếu x = 0 thì phân thức ko xác định
Nếu x = 3 thì
2.3 - 1 / 3^2 - 3
= 5/6
Cho biểu thức A= [2x/2x(x-1)+3-3x - 5/2x-3 ] : 5-3x/1-x
a) tìm x để biểu thức A có nghĩa và rút gọn A
b) Chứng minh rằng với mọi x để A có nghĩa thì biểu thức M= 2/x2+2 - 1/3-2x + A chỉ nhận đúng 1 giá trị nguyên
cho A= x-1/2x. tìm gtrị của x để A nhận gtrị nguyên
\(A=\dfrac{x-1}{2x}\)
⇔\(\dfrac{1}{A}=\dfrac{2x}{x-1}\)
⇔\(\dfrac{1}{A}=2+\dfrac{2}{x-1}\)
Để \(\dfrac{1}{A}\) nhận gtri nguyên thì \(\dfrac{2}{x-1}\) nhận gtri nguyên
⇔x-1 là ước của 2 =\(\left\{\mp1;\mp2\right\}\)
*x-1=1
⇔x=2(TM)
*x-1=-1
⇔x=0(TM)
*x-1=2
⇔x=3(TM)
*x-1=-2
⇔x=-1(TM
Vậy x ϵ {1;-1;2;-2} thì \(\dfrac{1}{A}\) nhận gtri nguyên
cho đa thức A(x)=3x^2+5x^3+x-2x^2-x^2+1-4x^3-2x-3
1. Tìm x để gtrị của đa thức A(x) bằng gtrị của đa thức B(x)=2x-2
nhanh nhé tớ cần gấp lắm
Vk yêu để anh giúp cho !
\(A\left(x\right)=3x^2+5x^3+x-2x^2-x+1-4x^3-2x-3\)
\(\Leftrightarrow A\left(x\right)=x^3-x-2\)
Ta có \(A\left(x\right)x^3-x-2=B\left(x\right)=2x-2\)
\(\Leftrightarrow x^3-2=2x\)( Vì cả 2 vế đều có -2 vợ nhé )
\(\Leftrightarrow x^3=2x+x=3x\)
\(\Rightarrow x=0\)( Vì chỉ có x=0 mới thỏa mãn điều kiện trên )
Chúc vk yêu học giỏi !