Cho: \(x=\dfrac{7}{3a-1}\) .Tìm a để: a)x=-1 b)x=7
cho số hữu tỉ sau : x= 7/3a-1
a. tìm a để x=-1
b. tìm a để x =7
Giải:
Ta có: x = 1
=> \(\frac{7}{3a-1}=1\)
=> \(3a-1=7\)
=> 3a = 8
=> a = 8/3
b) Ta có: x = 7
=> \(\frac{7}{3a-1}=7\)
=> 3a - 1 = 7 : 7
=> 3a - 1 = 1
=> 3a = 2
=> a = 2/3
#)Giải :
a) \(x=\frac{7}{3a-1}\)
Theo đề : \(-1=\frac{7}{3a-1}\)
Từ đây giải ra a = - 2
b) \(x=\frac{7}{3a-1}\)
theo đề : \(7=\frac{7}{3a-1}\)
Từ đây ra a = \(\frac{2}{3}\)
Cho số hữu tỉ x = \(\dfrac{5}{3a-1}\) . Tìm a để a:
a) x=1 b) x= -5
a) \(\dfrac{5}{3a-1}=1\)
\(\Rightarrow3a-1=5\)
\(\Rightarrow3a=6\)
\(\Rightarrow a=\dfrac{6}{3}=2\)
b) \(\dfrac{5}{3a-1}=-5\)
\(\Rightarrow3a-1=5:\left(-5\right)=-1\)
\(\Rightarrow3a=-1+1=0\)
\(\Rightarrow a=0:3=0\)
Cho số hữu tỉ x = \(\dfrac{5}{3a-1}\) . Tìm a để:
a) x=1 b) x=5
a) x = 1
⇒ 3a - 1 = 5
⇒ 3a = 6
⇒ a = 2
b) x = 5
⇒ 3a - 1 = 1
⇒ 3a = 2
⇒ a = 2/3
rút gọn biểu thức
1) \(\dfrac{a+b}{3a-b}+\dfrac{b}{a+b}-\dfrac{a^2-b^2}{3a-b}\)
2) \(\left(\dfrac{7}{a+b}+\dfrac{a^2+49}{a^2-49}-\dfrac{7}{a-7}\right)\div\dfrac{a+1}{2}\)
3) \(\left(x^2+\dfrac{4x^2}{x^2-4}\right)\left(\dfrac{x+2}{x-4}+\dfrac{2-3x}{x^3-4x}\times\dfrac{x^2-4}{x-2}\right)\)
2: \(\left(\dfrac{7}{a+7}+\dfrac{a^2+49}{a^2-49}-\dfrac{7}{a-7}\right):\dfrac{a+1}{2}\)
\(=\dfrac{7a-49+a^2+49-7a-49}{\left(a-7\right)\left(a+7\right)}\cdot\dfrac{2}{a+1}\)
\(=\dfrac{a^2-49}{\left(a-7\right)\left(a+7\right)}\cdot\dfrac{2}{a+1}=\dfrac{2}{a+1}\)
3: \(=\dfrac{x^4-4x^2+4x^2}{x^2-4}\cdot\left(\dfrac{x+2}{x-4}+\dfrac{2-3x}{x\left(x^2-4\right)}\cdot\dfrac{x^2-4}{x-2}\right)\)
\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\left(\dfrac{x+2}{x-4}+\dfrac{2-3x}{x\left(x-2\right)}\right)\)
\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x^2-4\right)+\left(2-3x\right)\left(x-4\right)}{x\left(x-2\right)\left(x-4\right)}\)
\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^3-4x+2x-8-3x^2+12x}{x\left(x-2\right)\left(x-4\right)}\)
\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^3-3x^2+10x-8}{x\left(x-2\right)\left(x-4\right)}\)
\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^3-x^2-2x^2+2x+8x-8}{x\left(x-2\right)\left(x-4\right)}\)
\(=\dfrac{x^3\left(x-1\right)\left(x^2-2x+8\right)}{\left(x-2\right)^2\cdot\left(x+2\right)\left(x-4\right)}\)
Cho biểu thức : A = \(\dfrac{x^2+2}{x^2-1}+\dfrac{x+1}{x^2+x+1}+\dfrac{1}{1-x}\)với x ≠ 1
a) Chứng minh A = \(\dfrac{x+1}{x^2+x+1}\)
b) Tìm x để A = \(\dfrac{2}{7}\)
c) Tìm giá trị nhỏ nhất của A
a: \(A=\dfrac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x}{x^2+x+1}\)
Cho A = \(\dfrac{x+2\sqrt{x}}{x}\); B = \(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)(ĐKXĐ: x > 0). Tìm x nguyên để \(\dfrac{A}{B}< \dfrac{7}{4}\).
\(P=\dfrac{A}{B}=\sqrt{x}+1\)
P<7/4
=>căn x<3/4
=>0<x<9/16
Cho A = \(\dfrac{3x-2}{x}-\dfrac{x-7}{x-5}-\dfrac{10}{x^2-5x}\)
Tìm các giá trị nguyên của x để B = A * \(\dfrac{x+1}{x-1}\)
Cho A = \(\dfrac{x+2\sqrt{x}}{x}\); B = \(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)(ĐKXĐ: X > 0). Tìm x để biểu thức \(\dfrac{A}{B}< \dfrac{7}{4}\) nguyên.
đk x > 0
\(\dfrac{A}{B}=\dfrac{\dfrac{x+2\sqrt{x}}{x}}{\dfrac{\sqrt{x}+2}{\sqrt{x}+1}}=\dfrac{\dfrac{\sqrt{x}+2}{\sqrt{x}}}{\dfrac{\sqrt{x}+2}{\sqrt{x}+1}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{7}{4}< 0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}+4-7\sqrt{x}}{4\sqrt{x}}< 0\Leftrightarrow\dfrac{-3\sqrt{x}+4}{4\sqrt{x}}< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3\sqrt{x}+4\ne0\\-3\sqrt{x}+4< 0\\4\sqrt{x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{16}{9}\\x< \dfrac{16}{9}\\x\ne0\end{matrix}\right.\)
Cho số hữu tỷ x = \(\frac{7}{3a-1}\) .Tìm a để
a.x=-1 b. x =7
a) \(x=-1\Leftrightarrow\frac{7}{3a-1}=-1\)
\(\Leftrightarrow3a-1=-7\Leftrightarrow a=-2\)
b) \(x=7\Leftrightarrow\frac{7}{3a-1}=7\)
\(\Leftrightarrow3a-1=1\Leftrightarrow a=\frac{2}{3}\)
a) x = -1
7/3a - 1 = -1
7 = -3a + 1
7 - 1 = -3a
6 = -3a
6 : (-3) = a
-2 = a
=> a = -2
b) x = 7
7/3a - 1 = 7
7 = 7(3a - 1)
7 : 7 = 3a - 1
1 = 3a - 1
1 + 1 = 3a
2 = 3a
2/3 = a
=> a = 2/3
Bài giả
Ta có : \(x=\frac{7}{3a-1}\)
\(a,\text{ }x=-1\) \(\Rightarrow\text{ }7\text{ : }\left(3a-1\right)=-1\)
\(3a-1=7\text{ : }\left(-1\right)\)
\(3a-1=-7\)
\(3a=-7+1\)
\(3a=-6\)
\(a=-6\text{ : }3\)
\(a=-2\)
\(b,\text{ }x=7\) \(\Rightarrow\text{ }7\text{ : }\left(3a-1\right)=7\)
\(3a-1=7\text{ : }7\)
\(3a-1=1\)
\(3a=1+1\)
\(3a=2\)
\(a=\frac{2}{3}\)