Phân tích biểu thức sau về dạng nhân tử:
a) \(\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{ay}\)
b) \(x^2+x\sqrt{x}+\sqrt{x}+1\)
c) \(\sqrt{6.x}-x.2\sqrt{3}\)
phân tích đa thức thành nhân tử (với a b x y không âm, a> b)
a) xy - \(y\sqrt{x}\) + \(\sqrt{x}-1\)
b) \(\sqrt{ab}-\sqrt{by}+\sqrt{bx}+\sqrt{ay}\)
c) \(\sqrt{a+b}+\sqrt{a^2+b^2}\)
d) 12 - \(\sqrt{x}\) - x
d: \(=-\left(x+\sqrt{x}-12\right)=-\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)
phân tích đa tức thành nhân tử
a) 5+ \(\sqrt{x}\) + 25 - x
b) xy -x\(\sqrt{y}\) + \(\sqrt{y}\) - 1
c)\(\sqrt{a-b}\) - \(\sqrt{a^2-b^2}\)
d) \(\sqrt{ax}\) + \(\sqrt{by}\) - \(\sqrt{bx}\) -\(\sqrt{ay}\)
Giair hộ mình vs ạ!
Phân tích thành nhân tử ( với các số x, y, a, b không âm và \(a\ge b\))
a) \(xy-y\sqrt{x}+\sqrt{x}-1\)
b) \(\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{ay}\)
c) \(\sqrt{a+b}+\sqrt{a^2-b^2}\)
d) \(12-\sqrt{x}-x\)
\(a)\) \(xy-y\sqrt{x}+\sqrt{x}-1\)
= \(y\sqrt{x}.(\sqrt{x}-1)+\sqrt{x}-1\)
=\((\sqrt{x}-1).(y\sqrt{x}+1)\).
\(b)\)\(\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{ay}\)
=\(\sqrt{a}.\sqrt{x}-\sqrt{b}.\sqrt{y}+\sqrt{b}.\sqrt{x}-\sqrt{a}.\sqrt{y}\)
=\(\sqrt{a}.\sqrt{x}+\sqrt{b}.\sqrt{x}-\sqrt{a}.\sqrt{y}-\sqrt{b}.\sqrt{y}\)
=\(\sqrt{x}.(\sqrt{a}+\sqrt{b})-\sqrt{y}.(\sqrt{a}+\sqrt{b})\)
=\((\sqrt{x}-\sqrt{y}).(\sqrt{a}+\sqrt{b})\).
\(c)\)\(\sqrt{a+b}+\sqrt{a^2-b^2}\)
=\(\sqrt{a+b}+\sqrt{(a+b).(a-b)}\)
=\(\sqrt{a+b}+\sqrt{a+b}.\sqrt{a-b}\)
=\(\sqrt{a+b}.\left(1+\sqrt{a-b}\right)\).
\(d)\) \(12-\sqrt{x}-x\)
=\(12-4\sqrt{x}+3\sqrt{x}-x\)
=\(4.\left(3-\sqrt{x}\right)+\sqrt{x}\left(3-\sqrt{x}\right)\)
=\(\left(3-\sqrt{x}\right).\left(4+\sqrt{3}\right)\).
a) \(xy-y\sqrt{x}+\sqrt{x}-1=\left(\sqrt{x}\right)^2.y-y\sqrt{x}+\sqrt{x}-1\)
\(=y\sqrt{x}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\)
\(=\left(\sqrt{x}-1\right)\left(y\sqrt{x}+1\right)\)
b) \(\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{ay}=\left(\sqrt{ax}+\sqrt{bx}\right)-\left(\sqrt{ay}+\sqrt{by}\right)\)
\(=\sqrt{x}\left(\sqrt{a}+\sqrt{b}\right)-\sqrt{y}\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{x}-\sqrt{y}\right)\)
c) \(\sqrt{a+b}+\sqrt{a^2-b^2}=\sqrt{a+b}+\sqrt{\left(a-b\right)\left(a+b\right)}\)
\(=\sqrt{a+b}+\sqrt{a-b}.\sqrt{a+b}\)
\(=\sqrt{a+b}.\left(1+\sqrt{a-b}\right)\)
d) \(12-\sqrt{x}-x=12-\sqrt{4x}+\sqrt{3x}-x\)
\(=4\left(3-\sqrt{x}\right)+\sqrt{x}\left(3-\sqrt{x}\right)\)
\(=\left(3-\sqrt{x}\right)\left(4+\sqrt{x}\right)\)
Phân tích thành nhân tử:
a) \(xy-y\sqrt{x}+\sqrt{x}-1\)
b) \(\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{ay}\)
a> = \(y\sqrt{x}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)=\left(\sqrt{x}-1\right)\left(y\sqrt{x}-1\right)\)
a) \(xy-y\sqrt{x}+\sqrt{x}-1\)
\(=y\sqrt{x}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\)
\(=\left(\sqrt{x}-1\right)\left(y\sqrt{x}+1\right)\)
b) \(\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{ay}\)
\(=\left(\sqrt{ax}-\sqrt{ay}\right)+\left(-\sqrt{by}+\sqrt{bx}\right)\)
\(=\sqrt{a}.\left(\sqrt{x}-\sqrt{y}\right)+\sqrt{b}.\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{a}+\sqrt{b}\right)\)
Phân tích đa thức thành nhân tử :
a. \(\sqrt{ax}+\sqrt{by}-\sqrt{ay}-\sqrt{bx}\)
b. \(\sqrt{a^2-b^2}-\sqrt{a^3+b^3}\)
c. \(x-3\sqrt{x}-18\)
d. \(x\sqrt{x}+4x-12\sqrt{x}-27\)
a/ \(=\sqrt{a}\left(\sqrt{x}-\sqrt{y}\right)-\sqrt{b}\left(\sqrt{x}-\sqrt{y}\right)=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{a}-\sqrt{b}\right)\)
b/ \(=\sqrt{\left(a-b\right)\left(a+b\right)}-\sqrt{\left(a+b\right)\left(a^2-ab+b^2\right)}\)
\(=\sqrt{a+b}\left(\sqrt{\left(a-b\right)\left(a^2-ab+b^2\right)}\right)\)
c/ \(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{81}{4}=\left(\sqrt{x}-\frac{3}{2}-\frac{9}{2}\right)\left(\sqrt{x}-\frac{3}{2}+\frac{9}{2}\right)=\left(\sqrt{x}-6\right)\left(\sqrt{x}+3\right)\)
\(a.\sqrt{ax}+\sqrt{by}-\sqrt{ay}-\sqrt{bx}\\ =\left(\sqrt{ax}-\sqrt{ay}\right)-\left(\sqrt{bx}-\sqrt{by}\right)\\ =\sqrt{a}\left(\sqrt{x}-\sqrt{y}\right)-\sqrt{b}\left(\sqrt{x}-\sqrt{y}\right)\\ =\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(b.\sqrt{a^2-b^2}-\sqrt{a^3+b^3}\\ =\sqrt{\left(a+b\right)\left(a-b\right)}-\sqrt{\left(a+b\right)\left(a^2-ab+b^2\right)}\\ =\sqrt{a+b}\left(\sqrt{a-b}-\sqrt{a^2-ab+b^2}\right)\)
\(c.x-3\sqrt{x}-18=x-6\sqrt{x}+3\sqrt{x}-18\\ =\sqrt{x}\left(\sqrt{x}-6\right)+3\left(\sqrt{x}-6\right)\\ =\left(\sqrt{x}+3\right)\left(\sqrt{x}-6\right)\)
\(d.x\sqrt{x}+4x-12\sqrt{x}-27=\left(\sqrt{x^3}-27\right)+\left(4x-12\sqrt{x}\right)\\ =\left(\sqrt{x}-3\right)\left(x+3\sqrt{x}+9\right)+4\sqrt{x}\left(\sqrt{x}-3\right)\\ =\left(\sqrt{x}-3\right)\left(x+3\sqrt{x}+9+4\sqrt{x}\right)\\ =\left(\sqrt{x}-3\right)\left(x+7\sqrt{x}+9\right)\)
(có gì sai mong mọi người góp ý)
_Phân tích thành nhân tử :
a) a\(\sqrt{b}-b\sqrt{a}\)
b) \(x\sqrt{x}+\sqrt{x}-x-1\)
c) \(\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)
d) \(\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{ay}\)
a,\(a\sqrt{b}-b\sqrt{a}\)= \(\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)
b,\(x\sqrt{x}+\sqrt{x}-x-1\)
=\(\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)-\(\sqrt{x}\left(\sqrt{x}-1\right)\)
=\(\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1-\sqrt{x}\right)\)
=\(\left(\sqrt{x}-1\right)\left(x+1\right)\)
c,\(\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)=\(\sqrt{a}\left(\sqrt{b}+2\right)\)+\(3\left(\sqrt{b}+2\right)\)
=\(\left(\sqrt{b}+2\right)\left(3+\sqrt{a}\right)\)
d,\(\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{ay}\)
=\(\sqrt{a}\left(\sqrt{x}-\sqrt{y}\right)+\sqrt{b}\left(\sqrt{x}-\sqrt{y}\right)\)
=\(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{a}+\sqrt{b}\right)\)
1/ Cho biểu thức:
\(R=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3\left(\sqrt{x}+3\right)}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)với x\(\ge\)0, x\(\ne\)9
a) rút gọn R
b) Tìm các giá trị của x để R<-1
2/ Phân tích thành nhân tử(a,b,x,y dương và a>b)
a) \(\sqrt{ax}+\sqrt{by}-\sqrt{bx}-\sqrt{ay}\)
b) \(\sqrt{a-b}-\sqrt{a^2-b^2}\)
giúp mình với
Bài 2:
a: \(\sqrt{ax}+\sqrt{by}-\sqrt{bx}-\sqrt{ay}\)
\(=\sqrt{a}\left(\sqrt{x}-\sqrt{y}\right)-\sqrt{b}\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{a}-\sqrt{b}\right)\)
b: \(\sqrt{a-b}-\sqrt{a^2-b^2}\)
\(=\sqrt{a-b}-\sqrt{a-b}\cdot\sqrt{a+b}\)
\(=\sqrt{a-b}\left(1-\sqrt{a+b}\right)\)
1/ Cho biểu thức:
\(R=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3\left(\sqrt{x}+3\right)}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)với x\(\ge\)0, x\(\ne\)9
a) rút gọn R
b) Tìm các giá trị của x để R<-1
2/ Phân tích thành nhân tử(a,b,x,y dương và a>b)
a) \(\sqrt{ax}+\sqrt{by}-\sqrt{bx}-\sqrt{ay}\)
b)\(\sqrt{a-b}-\sqrt{a^2-b^2}\)
giúp mình với
Bài 2:
a: \(\sqrt{ax}-\sqrt{bx}+\sqrt{by}-\sqrt{ay}\)
\(=\sqrt{x}\left(\sqrt{a}-\sqrt{b}\right)-\sqrt{y}\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{x}-\sqrt{y}\right)\)
b: \(\sqrt{a-b}-\sqrt{a^2-b^2}\)
\(=\sqrt{a-b}-\sqrt{a-b}\cdot\sqrt{a+b}\)
\(=\sqrt{a-b}\left(1-\sqrt{a+b}\right)\)
1/ \(ab+b\sqrt{a}+\sqrt{a}+1\)
2/ \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
3/ \(xy-y\sqrt{x}+\sqrt{x}-1\)
4/\(\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{ay}\)
5/ \(\sqrt{a+b}+\sqrt{a^2+b^2}\)
6/\(12-\sqrt{x}-x\)