Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Phương
Xem chi tiết
Anh Aries
Xem chi tiết
Ngọc Vĩ
1 tháng 8 2015 lúc 19:19

a/ \(=\left(\frac{2\left(1-2x\right)-\left(4x^2+1\right)-\left(1+2x\right)}{1-4x^2}\right).\frac{4x^2-1}{2}=\frac{2-4x-4x^2-1-1-2x}{1-4x^2}.\frac{4x^2-1}{2}=\frac{-4-6x-4x^2}{1-4x^2}.\frac{4x^2-1}{2}=\frac{4x^2+6x+4}{2}=2x^2+3x+2\)

b/ có A = 2 \(\Leftrightarrow2x^2+3x+2=2\Rightarrow2x^2+3x=0\Rightarrow x\left(2x+3\right)=0\Rightarrow x=0\)

                                                                                                              hoặc \(2x+3=0\Rightarrow2x=-3\Rightarrow x=-\frac{3}{2}\)

Kim Hoàng Ânn
Xem chi tiết
Thu đây
Xem chi tiết
nguyenthiluyen
Xem chi tiết
[MINT HANOUE]
Xem chi tiết
rainy nguyễn
Xem chi tiết
Đồng Lâm Bảo Ngọc
Xem chi tiết
Nguyễn Huy Tú
26 tháng 6 2021 lúc 20:20

a,sửa đề :  \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x^2-4}\right)\)

\(=\left(\frac{1}{\left(x+2\right)^2}-\frac{1}{\left(x-2\right)^2}\right):\left(\frac{x-2+1}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\left(\frac{x^2-4x+4-x^2-4x-4}{\left(x+2\right)^2\left(x-2\right)^2}\right):\left(\frac{x-1}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\frac{-8x\left(x+2\right)\left(x-2\right)}{\left(x+2\right)^2\left(x-2\right)^2\left(x-1\right)}=\frac{-8x}{\left(x-1\right)\left(x^2-4\right)}\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
26 tháng 6 2021 lúc 20:27

b, \(\left(\frac{2x}{2x-y}-\frac{4x^2}{4x^2+4xy+y^2}\right):\left(\frac{2x}{4x^2-y^2}+\frac{1}{y-2x}\right)\)

\(=\left(\frac{2x}{2x-y}-\frac{4x^2}{\left(2x+y\right)^2}\right):\left(\frac{2x}{\left(2x-y\right)\left(2x+y\right)}-\frac{1}{2x-y}\right)\)

\(=\left(\frac{2x\left(2x+y\right)^2-4x^2\left(2x-y\right)}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{2x-\left(2x+y\right)}{\left(2x-y\right)\left(2x+y\right)}\right)\)

\(=\left(\frac{8x^3+8x^2y+2xy^2-8x^3+4x^2y}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{-y}{\left(2x-y\right)\left(2x+y\right)}\right)\)

\(=-\left(\frac{12x^2y+xy^2}{2x+y}\right)=\frac{-12x^2y-xy^2}{2x+y}\)

Khách vãng lai đã xóa
miner ro
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 11 2021 lúc 22:10

a: \(A=4x-3x^2+20-15x-9x^2-12x-4+\left(2x+1\right)^3-\left(8x^3-1\right)\)

\(=-12x^2-23x+16+8x^3+12x^2+6x+1-8x^3+1\)

\(=-17x+18\)

Hoa Thiên Cốt
Xem chi tiết