Cho tập hợp A={0,1,2,3,4,5,6,7} có bao nhiêu chữ số có 3 số khác nhau lập từ A mà số đó nhỏ hơn 453
Cho tập hợp A = { 0,1,2,3,4,5,6,7} . Từ A có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau mà tổng của 3 chữ số bằng 10
Các bộ tổng bằng 10: \(\left\{0;3;7\right\};\left\{0;4;6\right\};\left\{1;2;7\right\};\left\{1;3;6\right\};\left\{1;4;5\right\};\left\{2;3;5\right\}\)
Số số lập được:
\(2\left(3!-2!\right)+4.3!=32\) số
Cho tập hợp A= { 0,1,2,3,4,5,6,7}. Có bao nhiêu số tự nhiên chẵn có 6 chữ số khác nhau được lập thành từ các chữ số của tập A đồng thời phải có mặt ba chữ số 0,1,2 và chúng đứng cạnh nhau
Gọi số cần tìm là \(\overline{abcdef}\)
TH1: 0,1,2 là 3 số cuối
=>\(\overline{abc012};\overline{abc210}\)
a có 6 cách
b có 5 cách
c có 4 cách
=>CÓ 6*5*4*2=240 cách
TH2: \(\overline{ab\left\{0,1,2\right\}f}\)
0,1,2 có 3!=6 cách
a có 5 cách
b có 4 cách
f có 3 cách
=>Có 360 cách
TH3: \(\overline{a\left\{0,1,2\right\}ef}\)
0,1,2 có 3!=6 cách
f có 2 cách
e có 5 cách
a có 4 cách
=>Có 6*3*5*4=360 cách
TH4: \(\overline{\left\{0,1,2\right\}def}\)
{0;1;2} có 4 cách
f có 3 cách
d có 5 cách
e có 4 cách
=>Có 4*3*5*4=240 cách
=>Có 120+120+360+360+240=1200 cách
TH1 (012)def : chọn a từ (1,2) có 2 cách
chọn b từ (012)/(a) có 2 cách
chọn c từ (012)/(ab) có 1 cách
chọn f chẵn từ (4,6) có 2 cách
với d và e chọn 2 số từ 4 số còn lại và xếp nên có 4A2 cách
vậy có 2.2.1.4A2.2 số
TH2 a(012)ef
xếp chỗ cho 3 số (012) có 3! cách
chọn f từ (4,6) có 2 cách
chọn ae từ 4 số còn lại và xếp có 4A2 cách
vậy có 3!.2.4A2 số
TH3 ab(012)f
tương tự TH2
TH4 : abc(012):
chọn f chẵn từ (0,2) có 2 cách
chọn e từ (012)/(a) có 2 cách
chọn d từ (012)/(ab) có 1 cách
với abc chọn 3 số từ 5 số còn lại và xếp nên có 5A3 cách
vậy có 2.2.1.5A3 số
tổng 4 TH ta có
2.2.1.4A2.2+3!.2.4A2+3!.2.4A2+2.2.1.5A3=624 số
Câu 1 : Từ tập X ={ 0,1,2,3,4,5,6,7 } có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau sao cho 5 chữ số đó có đúng 3 chữ số chẵn và 2 chữ số lẻ
Câu 2 : Cho các chữ số 0,1,2,4,5,6,8 . Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong đó luôn xuất hiện chữ số 1
Cho tập hợp A = (0,1,2,3,4,5,6,7). Từ tập A này lập được bao nhiêu số tự nhiên có 6 chữ số khác nhau đôi một sao cho các số này là số lẻ và chữ số đứng ở vị trí thứ 3 luôn chia hết cho 4 ?
Từ Các chữ số : 0,1,2,3,4,5,6,7 có thể lập được bao nhiêu số tự nhiên
a, số đó có 4 chữ số
b,số đó có 4 chữ số khác nhau và lớn hơn 4500
Cho tập hợp A={1;2;3;4;5;6}. Từ tập A lập được bao nhiêu số tự nhiên chẵn có 4 chữ số khác nhau và nhỏ hơn 4012
A. 180.
B. 240.
C. 200.
D. 220.
Cho tập hợp Từ tập A= 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 lập được bao nhiêu số tự nhiên chẵn có 4 chữ số khác nhau và nhỏ hơn 4012
A. 180
B. 240
C. 200
D. 220
giúp mình với
Gọi số tự nhiên gồm 4 chữ số là: abcd
Trường hợp 1: d=0 (1 cách)
a : 6 cách ( #0); b: 5 cách; c:4 cách => 120 cách
TH2: d#0 ( nhận 2 4 6 => 1 cách)
a: 5 cách (#0; #d); b : 4 cách; c: 3 cách => 60 cách
=> TH1 + TH2 = 200 cách
ý lộn TH2: b: 5 cách(#a; #d); c: 4 cách => 100 cách
=> Tổng cộng 220 cách
Cho tập hợp A = {1,2,3,4,5,6}
a, Có thể lập được bao nhiêu số gồm bốn chữ số khác nhau hình thành từ tập hợp A
b, Có thể lập được bao nhiêu số gồm ba chữ số khác nhau hình thành từ tập hợp A và chia hết cho 2
c, Có thể lập được bao nhiêu số gồm sáu chữ số khác nhau hình thành từ tập hợp A và chia hết cho 3
d, Có thể lập được bao nhiêu số gồm năm chữ số khác nhau hình thành từ tập hợp A và chia hết cho 5
Các bạn ơi. có ai giúp mình giải chi tiết bài này với.