tìm tất cả các số nguyên x,y,z thoả mãn
3x2 +6y2 +2z2+3y2z2 - 18 =6
Tìm tất cả các số nguyên dương \(x;y;z\) thoả mãn : \(3^x+2^y=1+2^z\)
Tìm tất cả các bộ số nguyên dương (x;y;z) thoả mãn \(\dfrac{x}{y}=\dfrac{y+x}{y+z}\) và
(y + 2).(4xz + 6y - 3) là số chính phương.
\(\dfrac{x}{y}=\dfrac{x+y}{y+z}=\dfrac{y}{z}\Rightarrow xz=y^2\)
\(\left(y+2\right)\left(4xz+6y-3\right)=n^2\)
\(\Rightarrow\left(y+2\right)\left(4y^2+6y-3\right)=n^2\)
Gọi \(d=ƯC\left(y+2;4y^2+6y-3\right)\)
\(\Rightarrow4y^2+6y-3-\left(y+2\right)\left(4y-2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow y+2\) và \(4y^2+6y-3\) nguyên tố cùng nhau
Mà \(\left(y+2\right)\left(4y^2+6y-3\right)\) là SCP \(\Rightarrow y+2\) và \(4y^2+6y-3\) đồng thời là SCP
\(\Rightarrow4y^2+6y-3=k^2\)
\(\Leftrightarrow\left(4y+3\right)^2-21=\left(2k\right)^2\)
\(\Rightarrow\left(4y+3-2k\right)\left(4y+3+2k\right)=21\)
Giải pt ước số trên ra \(y=2\) là số nguyên dương duy nhất thỏa mãn
Thế vào \(xz=y^2=4\Rightarrow\left(x;z\right)=\left(1;4\right);\left(4;1\right);\left(2;2\right)\)
Vậy \(\left(x;y;z\right)=\left(1;2;4\right);\left(4;2;1\right);\left(2;2;2\right)\)
Tìm tất cả các cặp số nguyên (x,y) thoả mãn (x-1)2 +5y2 =6
Tìm các số nguyên tố x,y thoả mãn : x2+1=6y2+2.
giúp mik với mn mik đang cần gấp
Tìm các số nguyên tố x,y thoả mãn : x2+1=6y2+2.
giúp mik với mn mik đang cần gấp
1. Tìm các số tự nhiên x, y, z nhỏ nhất khác 0 thoả mãn: 20x = 25y = 30z
2. Tìm tất cả các số nguyên n biết: (2n + 1)\(⋮\)(n-1).
Bài 1:
Đặt $20x=25y=30z=t$ với $t$ là số tự nhiên khác 0.
$\Rightarrow x=\frac{t}{20}; y=\frac{t}{25}; z=\frac{t}{30}$
Để $x,y,z$ là stn thì $t\vdots 20,25,30$
$\Rightarrow t=BC(20,25,30)$
Để $x,y,z$ nhỏ nhất và khác 0 thì $t$ nhỏ nhất và khác 0
$\Rightarrow t=BCNN(20,25,30)$ sao cho $t\neq 0$
$\Rightarrow t=300$
$\Rightarrow x=\frac{t}{20}=\frac{300}{20}=15, y=\frac{t}{25}=\frac{300}{25}=12; z=\frac{300}{30}=10$
Bài 2:
$2n+1\vdots n-1$
$\Rightarrow 2(n-1)+3\vdots n-1$
$\Rightarrow 3\vdots n-1$
$\Rightarrow n-1\in \left\{1; -1; 3;-3\right\}$
$\Rightarrow n\in \left\{3; 0; 4; -2\right\}$
Tìm tổng tất cả các số nguyên x thoả mãn: -6 < x < 5
Các số nguyên x thoả mãn -6 < x < 5 là: -5;-4;-3;-2;-1;0;1;2;3;4
Ta có: (-5) + (-4) + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 +4
= (-5) + [(-4) + 4)] + [(-3) + 3)] + [(-2) + 2] + [(-1) + 1] + 0
= (-5) + 0 + 0+ 0 + 0 + 0 = -5
a) Tìm tất cả các số nguyên x; y thoả mãn : 2xy - 2x + y= 12
\(2x\left(y-1\right)+y-1=11\Leftrightarrow\left(2x+1\right)\left(y-1\right)=11\)
\(\Rightarrow2x+1;y-1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
2x+1 | 1 | -1 | 11 | -11 |
y-1 | 11 | -11 | 1 | -1 |
x | 0 | -1 | 5 | -6 |
y | 12 | -10 | 2 | 0 |
Tìm tất cả các cặp số nguyên (x;y) thoả mãn: x^2 + 5y^2 + 4xy = 2023
Tìm tất cả các cặp số nguyên dương (x; y) thoả mãn x6 + x3y = y3 + 2y2.