cho 3 tỉ số = nhau a/(b+c) ; b/(c+a) ; c/(a+b) . Biết a+ b + c khác 0 . Tìm giá trị của mỗi tỉ số đó
Cho \(3\) tỉ số bằng nhau là \(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\). \(\text{ Tìm giá trị của mỗi tỉ số đó}\)
\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)
\(\Rightarrow\dfrac{a}{b+c}+1=\dfrac{b}{a+c}+1=\dfrac{c}{a+b}+1\)
\(\Rightarrow\dfrac{a+b+c}{b+c}=\dfrac{a+b+c}{a+c}=\dfrac{a+b+c}{a+b}\)
\(\Rightarrow b+c=a+c=b+a\)
\(\Rightarrow a=b=c\)
\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=\dfrac{a}{a+a}=\dfrac{1}{2}\)
cho 3 tỉ số = nhau là a/b+c ; b/c+a ; c/a+b
tìm gt của mổi tỉ số đó
Giả sử a = 0 \(\Rightarrow\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=0\)
\(\Rightarrow a=b=c=0\)
Vô lý vì nếu như vậy mẫu của mỗi phân số trên sẽ không tồn tại. Dó đó \(a;b;c\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau; ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\)
\(=\frac{1}{2}\)
Do đó giá trị mỗi tỉ số đó là \(\frac{1}{2}.\)
Cho 3 tỉ số bằng nhAU LÀ A/B+C, B/C+A, C/A+B
Tìm giá trị của mỗi tỉ số đó
cho 3 tỉ số bằng nhau :a/b+c :b/c+a ;c/a+b . tìm giá trị của mỗi tỉ số
phiền các bn giúp mik ới
Áp dụng TCDTSBN ta có:
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
Cho 3 tỉ số bằng nhau \(\frac{a}{b+c};\frac{b}{a+c};\frac{c}{a+b}\)Tìm giá trị cuả mỗi tỉ số đó
Ta có:\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+b+a}\)
\(=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy giá trị của mỗi tỉ số là:\(\frac{1}{2}\)
Ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{a}{a+b}.\)
\(\Rightarrow\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{1}{2}\)
Xét 2 trường hợp: Nếu a+b+c = 0
Và Nếu a+b+c = \(\frac{1}{2}\)
Ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\),Xét 2 TH sau:
+Nếu a+b+c \(\ne\) 0 thì theo t/c dãy tỉ số=nhau:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(a+a\right)+\left(b+b\right)+\left(c+c\right)}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
+Nếu a+b+c = 0 thì a+b=-c ; b+c=-a;c+a=-b
\(=>\frac{a}{b+c}=\frac{a}{-a}=1;\frac{b}{a+c}=\frac{b}{-b}=-1;\frac{c}{a+b}=\frac{c}{-c}=-1\)
\(=>\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=-1\)
Vậy............
Cho 3 số hữu tỉ = nhau là a/b+c,b/c+a,c/a+b .Tìm giá trị của mỗi hữu tỉ số đó .
Giúp mk nka m.n
cho 3 tỉ số bằng nhau là: a/b+c, b/c+a, c/a+b tìm giá trị của mỗi số đó
Cho 3 tỉ số bằng nhau:
\(\frac{a}{b+c};\frac{b}{a+c};\frac{c}{b+a}\)
Tìm giá trị của mỗi tỉ số đó
1./ Nếu a + b + c = 0
\(\Rightarrow a=-\left(b+c\right)\Rightarrow\frac{a}{b+c}=-1\)
=> Giá trị các tỷ số đó = -1.
2./ Nếu a + b + c khác 0 thì:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Giá trị các tỷ số đó = 1/2
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{b+a}\)
\(=\frac{a-b-c}{b+c-a-c-b-a}\)
\(=\frac{a-b-c}{-2a}\)
\(=>\frac{a}{b+c}=\frac{a-b-c}{-2a}\)
\(=>\frac{b}{a+c}=\frac{a-b-c}{-2a}\)
\(=>\frac{c}{b+a}=\frac{a-b-c}{-2a}\)
Cho 3 tỉ số bằng nhau là
\(\frac{a}{b+c},\frac{b}{c+a},\frac{c}{a+b}\)
Tính giá trị mỗi tỉ số đó
Từ \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{a}{b+c}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Tương tự \(\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)
Vậy \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
\(\Rightarrow2a=b+c\)
\(\Rightarrow2b=c+a\)
\(\Rightarrow2c=a+b\)
ta có hpt:
\(\hept{\begin{cases}2a=b+c\\2b=c+a\\2c=a+b\end{cases}\hept{\begin{cases}b=2a-c\\2b=c+a\\2c=a+b\end{cases}}}\)
thế b ta đc
\(\hept{\begin{cases}4a-2c=c+a\\2c=a+2a-c\end{cases}\hept{\begin{cases}3a-3c=0\\3c=3a=0\end{cases}\Rightarrow}}a=c\)
\(b=2a-c=a\)
\(\Rightarrow a=b=c\)vậy pt vô số nghiệm