Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
pham thi teo
Xem chi tiết
lê việt
Xem chi tiết
Cô Hoàng Huyền
26 tháng 9 2017 lúc 12:04

\(S=\frac{cos^2a-sin^2b}{sin^2a.sin^2b}-cot^2a.cot^2b=\frac{cos^2a-sin^2b}{sin^2a.sin^2b}-\frac{cos^2a.cos^2b}{sin^2a.sin^2b}\)

\(=\frac{cos^2a-sin^2b-cos^2a.cos^2b}{sin^2a.sin^2b}=\frac{cos^2a-cos^2a.cos^2b-sin^2b}{sin^2a.sin^2b}\)

\(=\frac{cos^2a\left(1-cos^2b\right)-sin^2b}{sin^2a.sin^2b}=\frac{cos^2a.sin^2b-sin^2b}{sin^2a.sin^2b}\)

\(=\frac{sin^2b\left(cos^2a-1\right)}{sin^2a.sin^2b}=\frac{-sin^2a.sin^2b}{sin^2a.sin^2b}=-1.\)

Linh Nhật
Xem chi tiết
nguyen minh huyen
Xem chi tiết
Mất nick đau lòng con qu...
21 tháng 7 2019 lúc 10:42

a) \(\tan^2\alpha+1=\frac{\sin^2\alpha}{\cos^2\alpha}+1=\frac{\sin^2\alpha+\cos^2\alpha}{\cos^2\alpha}=\frac{1}{\cos^2\alpha}\)

b) \(\cot^2\alpha+1=\frac{\cos^2\alpha}{\sin^2\alpha}+1=\frac{\cos^2\alpha+\sin^2\alpha}{\sin^2\alpha}=\frac{1}{\sin^2\alpha}\)

c) \(\cos^4\alpha-\sin^4\alpha=\left(\cos^2\alpha+\sin^2\alpha\right)\left(\cos^2\alpha-\sin^2\alpha\right)=\cos^2\alpha-\sin^2\alpha\)

\(=2\cos^2\alpha-\left(\sin^2\alpha+\cos^2\alpha\right)=2\cos^2-1\)

Bich Hong
Xem chi tiết
Mysterious Person
21 tháng 8 2018 lúc 6:40

bài 1 : ta có : \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\left(0,6\right)^2=\dfrac{16}{25}\)

\(\Rightarrow cosa=\pm\dfrac{4}{5}\)

\(\Rightarrow tanx=\dfrac{sinx}{cosx}=\pm\dfrac{3}{4}\) \(\Rightarrow cotx=\dfrac{1}{tanx}=\pm\dfrac{4}{3}\)

bài 2)

ý 1 : a) ta có : \(\dfrac{1}{cos^2a}=\dfrac{sin^2a+cos^2a}{cos^2a}=tan^2a+1\left(đpcm\right)\)

b) ta có : \(\dfrac{1}{sin^2a}=\dfrac{sin^2a+cos^2a}{sin^2a}=1+cot^2a\left(đpcm\right)\)

c) \(cos^4a-sin^4a=\left(sin^2a+cos^2a\right)\left(cos^2a-sin^2a\right)\)

\(=cos^2a-sin^2a=2cos^2a-cos^2a-sin^2a=2cos^2a-1\left(đpcm\right)\)

ý 2 :

ta có : \(tana=2\Rightarrow cota=\dfrac{1}{2}\)

ta có : \(tan^2a+1=\dfrac{1}{cos^2a}\Leftrightarrow cos^2a=\dfrac{1}{tan^2a+1}=\dfrac{1}{5}\)

\(\Rightarrow cosa=\pm\dfrac{1}{\sqrt{5}}\Rightarrow sin^2a=1-cos^2a=\dfrac{4}{5}\) \(\Rightarrow sina=\pm\dfrac{2}{\sqrt{5}}\)

vậy ............................................................................

bài 3 bạn tự luyện tập như bài 2 cho quen nha :)

Nguyen An Mminh
Xem chi tiết
Capheny Bản Quyền
22 tháng 8 2020 lúc 15:07

\(1+tan^2a=\frac{1}{cos^2a}\)       

\(1+3^2=\frac{1}{cos^2a}\) 

\(10=\frac{1}{cos^2a}\)  

\(cos^2a=\frac{1}{10}\)          

\(cosa=\pm\sqrt{\frac{1}{10}}\) 

\(sin^2a+cos^2a=1\)   

\(sin^2a+\frac{1}{10}=1\)   

\(sin^2a=\frac{9}{10}\)   

\(sina=+\sqrt{\frac{9}{10}}\) 

Vì tan dương nên có hai trường hợp : 

TH1 : cả sin và cos cùng dương : 

\(A=\frac{sina\cdot cosa}{sin^2a-cos^2a}\) 

\(=\frac{\sqrt{\frac{9}{10}}\cdot\sqrt{\frac{1}{10}}}{\frac{9}{10}-\frac{1}{10}}\) 

\(=\frac{\frac{3}{10}}{\frac{8}{10}}\)    

\(=\frac{3}{8}\)   

TH2 : cả sin và cos cùng âm 

\(A=\frac{sina\cdot cosa}{sin^2a-cos^2a}\)                   

\(=\frac{-\sqrt{\frac{9}{10}}\cdot-\sqrt{\frac{1}{10}}}{\frac{9}{10}-\frac{1}{10}}\)                 

\(=\frac{\frac{3}{10}}{\frac{8}{10}}\)      

\(=\frac{3}{8}\)            

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 6 2018 lúc 3:23

Chọn A.

Áp dụng công thức biến đổi tổng thành tích và công thức nhân đôi; ta có

Lâm Ánh Yên
Xem chi tiết
Bạn Và Bè
Xem chi tiết
Phạm Đình Tân
5 tháng 11 2021 lúc 8:38
Giải. Áp dụng công thức lượng giác.

Bài tập Tất cả

Khách vãng lai đã xóa