Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thanh Liêm
Xem chi tiết
Akai Haruma
23 tháng 8 2017 lúc 8:15

Lời giải:

\(a,b>0\) nên từ \(a^2+b^2=1\Rightarrow a^2=1-b^2<1\)

\(\)Tương tự, \(b^2<1\)

\(\Leftrightarrow \left\{\begin{matrix} a^8<1\\ b^8<1\end{matrix}\right.\)

Do đó, \(\left\{\begin{matrix} a^{10}=a^2.a^8< a^2\\ b^{10}=b^2.b^8< b^2\end{matrix}\right.\Rightarrow a^{10}+b^{10}< a^2+b^2=1\)

Ta có đpcm.

Hoàng Anh
Xem chi tiết
Kawasaki
Xem chi tiết
Thanh Tâm
Xem chi tiết
Big City Boy
Xem chi tiết
Loc Xuan
Xem chi tiết
Nguyễn Thiều Công Thành
13 tháng 9 2017 lúc 22:27

\(\Leftrightarrow\left(a+b\right)^2-2\left(ab+1\right)+\left(\frac{ab+1}{a+b}\right)^2=0\)

\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2=0\)

\(\Leftrightarrow ab+1=\left(a+b\right)^2\Rightarrow\sqrt{ab+1}=a+b\in Q\left(Q.E.D\right)\)

phan le bao thi
Xem chi tiết

Thay 1= 4(ab+bc+ca), Ta có: 

\(\left(1+4a^2\right)\left(1+4b^2\right)\left(1+4c^2\right)\)

\(=4\left(ab+bc+ca+a^2\right).4\left(ab+bc+ca+b^2\right).4\left(ab+bc+ca+c^2\right)\)

\(=64.\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)\)

\(=64\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)

\(=\left[8\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Mà a, b, c là số hữu tỉ 

\(\Rightarrow\left[8\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)là bình phương một số hữu tỉ 

\(\Rightarrow\left(1+4a^2\right)\left(1+4b^2\right)\left(1+4c^2\right)\)là bình phương một số hữu tỉ

Vũ Bùi Nhật Linh
Xem chi tiết
nguyen xuan thinh
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
30 tháng 8 2019 lúc 11:20

\(ab+bc+ac=1\)

\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)

\(=\left(ab+bc+ac+a^2\right)\left(ab+bc+ac+b^2\right)\left(ab+bc+ca+c^2\right)\)

\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)\)

\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)