Tìm n nguyên
n^2-6 chia hết cho n-3
3-2n chia hết cho 3n+2
tìm số nguyên n sao cho :
1,n^2+2n-4 chia hết cho 11
2,2n^3+n^2+7n+1 chia hết cho 2n -1
3,n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
o l m . v n
4,n^3-2 chia hết cho n-2
5, n^3-3n^2-3n-1 chia hết cho n^2+n+1
6, 5^n-2^n chia hết cho 63
Tìm số nguyên n sao cho
a) (2n^3 + n^2 + 7n + 1) chia hết cho 2n-1
b)(n^3 - 2) chia hết cho n-2
c)(n^3 - 3n^2 - 3n -1) chia hết cho n^2 + n + 1
d)((n^4 - 2n^3 = 2n^2 - 2n + 1) chia hết cho n^4 - 1
e)(n^3 - n^2 + 2n + 7) chia hết cho n^2 + 1
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
tìm số nguyên n sao cho
a, n+12 chia hết cho n+7
b, n-6 chia hết cho n +4
c, 3n+2 chia hết cho n-1
d,n^2+2n-7 chia hết cho n-2
e, 4n+3 chia hết cho 2n-1
1. Tìm n
a) n+4 chia hết cho n
b) 3n+7 chia hết cho n
c) 27- 5n chia hết cho n
d) n+6 chia hết cho n+2
e) 2n+3 chia hết cho n-2
f) 3n+1 chia hết cho 2n
2. Tìm n thuộc N*
A) 2+4+6+8+.....+2n = 210
B) 1+3+5+.....+(2n-1) =225
a) Ta có: n+4 chia hết cho 4.
Suy ra 4 chia hết cho n.Vậy n=1;2
b, 3n+7 chia hết cho n => 7 chia hết n
Vậy n=1
còn nhiều quá
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
Ta có n-3=n+4-7
6)=>n-4+7 chia hết cho n+4
=>7 chia hết cho n+4
=> n+4 thuộc Ư(7)
=> n+4 thuộc {1, -1,7,-7}
=> n thuộc {-3,-5,3,-11}
Tìm số nguyên n
1\ n+7 chia hết cho n+2
2\ 9-n chia hết cho n-3
3\ n^2+n+17 chia hết cho n+1
4\ n^2+25 chia hết cho n+2
5\ 2n+7 chia hết cho n+1
6\ 3n+7 chia hết cho 2n+1
ta có : n+7 chia hết n+2
=> (n+2)+5 chia hết cho n+2
=> 5 chia hết n+2
=> n+2 c Ư (5) = { 1;5 }
+) n+2 = 1 => n=-1
+) n+2=5 => n=3
vậy n = -1 và n = 3
Ta có:
\(n+7⋮n+2\)
\(\Leftrightarrow\left(n+2\right)+5⋮n+2\)
Vì \(n+2⋮n+2\)
Để \(\left(n+2\right)+5⋮n+2\)
Thì \(5⋮n+2\)
\(\Rightarrow n+2\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow\orbr{\begin{cases}n+2=1\\n+2=5\end{cases}\Rightarrow\orbr{\begin{cases}n=-1\\n=3\end{cases}}}\)
Vậy....
3,\(n^2+n+17⋮n+1\)
\(=>n.\left(n+1\right)+17⋮n+1\)
Do \(n.\left(n+1\right)⋮n+1\)
\(=>17⋮n+1\)
\(=>n+1\inƯ\left(17\right)\)
\(=>n+1\in\left\{-17;-1;1;17\right\}\)
\(=>n\in\left\{-18;-2;0;16\right\}\)
Tìm số nguyên n sao cho:
a, n2 + 2n - 4 chia hết cho 11
b, 2n3 + n2 + 7n +1 chia hết cho 2n - 1
c, n3 - 2 chia hết cho n - 2
d, n3 - 3n2 - 3n - 1 chia hết cho n2 + n + 1
e, n4 - 2n3 + 2n2 - 2n + 1 chia hết cho n4 - 1
c) n3 - 2 = (n3 - 8) + 6 = (n -2)(n2 + 2n + 4) + 6
Để n3 - 2 chia hết cho n - 2 <=> 6 chia hết cho n - 2 <=> n - 2 \(\in\) Ư(6) = {-6;-3;-2;-1;1;2;3;6}
Tương ứng n \(\in\) {-4; -1; 0; 1; 3; 4; 5; 8}
Vậy.....
d) n3 - 3n2 - 3n - 1 = (n3 - 1) - (3n2 + 3n + 3) + 3 = (n -1).(n2 + n + 1) - 3.(n2 + n + 1) + 3 = (n - 4)(n2 + n + 1) + 3
Để n3 - 3n2 - 3n - 1 chia hết cho n2 + n + 1 thì (n - 4)(n2 + n + 1) + 3 chia hết cho n2 + n + 1
<=> 3 chia hết cho n2 + n + 1 <=> n2 + n + 1 \(\in\) Ư(3) = {-3;-1;1;3}
Mà n2 + n + 1 = (n + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) > 0 với mọi n nên n2 + n + 1 = 1 hoặc = 3
n2 + n + 1 = 1 <=> n = 0 hoặc n = -1
n2 + n + 1 = 3 <=> n2 + n - 2 = 0 <=> (n -1)(n +2) = 0 <=> n = 1 hoặc n = -2
Vậy ...
e) n4 - 2n3 + 2n2 - 2n + 1 = (n4 - 2n3 + n2) + (n2 - 2n + 1) = (n2 - n)2 + (n -1)2 = n2(n -1)2 + (n -1)2 = (n-1)2.(n2 + 1)
n4 - 1 = (n2 - 1).(n2 + 1) = (n -1)(n +1)(n2 + 1)
=> \(\frac{n^4-2n^3+2n^2-2n+1}{n^4-1}=\frac{\left(n-1\right)^2\left(n^2+1\right)}{\left(n-1\right)\left(n+1\right)\left(n^2+1\right)}=\frac{n-1}{n+1}\)( Điều kiện: n- 1 ; n + 1 khác 0 => n khác 1;-1)
Để n4 - 2n3 + 2n2 - 2n + 1 chia hết cho n4 - 1 thì \(\frac{n-1}{n+1}\) nguyên <=> n - 1 chia hết cho n + 1
<=> (n + 1) - 2 chia hết cho n +1
<=> 2 chia hết cho n + 1 <=> n + 1 \(\in\) Ư(2) = {-2;-1;1;2} <=> n \(\in\){-3; -2; 0; 1}
n = 1 Loại
Vậy n = -3 hoặc -2; 0 thì...
a) n2 + 2n - 4 = n2 + 2n - 15 + 11 = (n2 + 5n - 3n -15) + 11 = (n - 3)(n + 5) + 11
để n2 + 2n - 4 chia hết cho 11 <=> (n - 3).(n +5) chia hết cho 11 <=> n - 3 chia hết cho 11 hoặc n + 5 chia hết cho 11 ( Vì 11 là số nguyên tố)
n- 3 chia hết cho 11 <=> n = 11k + 3 ( k nguyên)
n + 5 chia hết cho 11 <=> n = 11k' - 5 ( k' nguyên)
Vậy với n = 11k + 3 hoặc n = 11k' - 5 thì.....
b) 2n3 + n2 + 7n + 1 = n2. (2n - 1) + 2n2 + 7n + 1 = n2. (2n -1) + n.(2n -1) + 8n + 1
= (n2 + n)(2n -1) + 4.(2n -1) + 5 = (n2 + n + 4)(2n -1) + 5
Để 2n3 + n2 + 7n + 1 chia hết cho 2n - 1 <=> (n2 + n + 4)(2n -1) + 5 chia hết cho 2n -1
<=> 5 chia hết cho 2n -1 <=> 2n - 1 \(\in\)Ư(5) = {-5;-1;1;5}
2n -1 = -5 => n = -2
2n -1 = -1 => n = 0
2n -1 = 1 => n = 1
2n -1 = 5 => n = 3
Vậy....
ai tính hộ cái tìm n để n^3-n^2+2n+7 chia hết cho n^2+1
Tìm số nguyên n, biết :
a) n+7 chia hết cho n+2
b) 9-n chia hết cho n-3
c) n^2 + n +17 chia hết cho n +1
d) n^2+25 chia hết cho n+2
e) 2n +7 chia hết cho n+1
g) 3n^2 + 5 chia hết cho n - 1
h) 3n +7 chia hết cho 2n +1
i) 2n^2 + 11 chia hết cho 3n +1
ai làm đúng mk k cho
a) \(n+7⋮n+2\)
=) \(\left[n+7-\left(n+2\right)\right]⋮n+2\)
=) \(n+7-n-2⋮n+2\)
=) \(5⋮n+2\)
=) \(n+2\inƯ\left(5\right)\)= \(\left\{+-1;+-5\right\}\)
=) \(n\in\left\{-3;-1;3;-7\right\}\)
đăng kí kênh V-I-S hộ mình nha !
b) \(9-n⋮n-3\)
=) \(\left[9-n+\left(n-3\right)\right]⋮n-3\)
=) \(9-n+n-3\)\(⋮n-3\)
=) \(6⋮n-3\)
=) \(n-3\inƯ\left(6\right)=\left\{+-1;+-2;+-3;+-6\right\}\)
=) \(n\in\left\{2;4;5;1;0;6;9;-3\right\}\)