CM: 1. MA= MB
2. MH = MK
3. AH= BK
Biết OA = OB
M thuộc Ot
O1 = O2
Cầu cứu SOS (lần 2)!!!
Cho góc nhọn xOy. Trên cạnh Ox, lấy A, trên cạnh Oy lấy B sao cho OB = OA. Kẻ AH vuông góc với Oy (H ϵ Oy) và BK vuông góc với Ox (K ϵ Ox). Gọi M là giao điểm của Ah và BK. C/m
a) AH = BK
b) MA = MB, MH = MK và tia OM là tia phân giác của góc xOy
c) HK // AB
Mong các bạn sẽ đáp lại lời cầu cứu này! Thank you very much!!!
a) Xét ΔOHA vuông tại H và ΔOKB vuông tại K có
OA=OB(gt)
\(\widehat{AOB}\) chung
Do đó: ΔOHA=ΔOKB(cạnh huyền-góc nhọn)
Suy ra: AH=BK(hai cạnh tương ứng)
Cho góc xoy nhọn và Ot là p/g của góc XOy. Qua điểm c thuộc ot kẻ Oa vuông góc với Ox , Ob vuông góc Oy
A) Cm : OA=OB
B) lấy điểm M thuộc ot chứng minh MA= MB
Cho góc xoy nhọn, Oz là tia phân giác của góc xoy. Lấy điểm A thuộc Ox, qua A kẻ đường thẳng song song với Oy tại M. Qua M kẻ đường thẳng song song Oy tại B.
a. CMR OA=OB; MA=MB
b. Từ M kẻ MH vuông góc Ox, MK vuông góc Oy. CMR: MH=MK
Cho góc nhọn xoy , oz là phân giác của góc đó . Qua A thuộc Ox kẻ đoạn thẳng song song vs Oy . Qua M kẻ đường thẳng song song vs Oz cắt Oy ở B
a. C MR OA = Ob, MA=MB
từ M kẻ MH vuông góc với Ox , MK vuông góc vs Oy . CMR ; MH = MK
a) Oz là phân giác góc xOy nên góc xOz = góc yOz
mà góc xOz = góc BMO(2 góc so le trong của Ox // MB) ; góc yOz = góc AMO (2 góc so le trong của Oy // MA)
=> góc AMO = góc BMO . ΔOAM;ΔOBMcó góc AOM = góc BOM (cmt) ; chung cạnh OM ; góc AMO = góc BMO
=> ΔOAM=ΔOBM(g.c.g)=> OA = OB (2 cạnh tương ứng)
b) Từ gt ta có : ΔOHM,ΔOKMvuông tại H,K có góc HOM = góc KOM (cmt) ; chung cạnh OM
=> ΔOHM=ΔOKM(cạnh huyền - góc nhọn) => MH = MK (2 cạnh tương ứng)
Cho góc nhọn xOy, Oz là tia phân giác của xOy. qua điểm A thuộc tia Ox vẽ đường thẳng song song với Oy cắt Oz tại M. Qua M kẻ đường thẳng song song với Ox cắt Oy tại B.Chứng minh:
a/OA=MB ; MA=OB.
b/ Từ M kẻ MH vuông góc với Ox ; MK vuông góc với Oy. Chứng minh MH=MK
Cho nửa đường tròn (O) đường kính AB. Lấy M là điểm tuỳ ý trên nửa đường tròn (M khác A và B). Kẻ MH vuông góc với AB (H ∈ AB). Trên cùng nửa mặt phang bờ AB chứa nửa đường tròn (O) vẽ hai nửa đường tròn tâm O 1 , đường kính AH và tâm O 2 , đường kính BH. Đoạn MA và MB cắt hai nửa đường tròn ( O 1 ) và ( O 2 ) lần lượt tại P và Q. Chứng minh:
a, MH = PQ
b, Các tam giác MPQ và MBA đồng dạng
c, PQ là tiếp tuyến chung của hai đường tròn ( O 1 ) và ( O 2 )
a, MPHQ là hình chữ nhật => MH = PQ
b, Sử dụng hệ thức lượng trong tam giác vuông chứng minh được MP.MA = MQ.MB => ∆MPQ: ∆MBA
c, P M H ^ = M B H ^ => P Q H ^ = O 2 Q B ^ => PQ là tiếp tuyến của O 2
Tương tự PQ cũng là tiếp tuyến ( O 1 )
cho góc nhọn xOy và Oz là tia phân giác của góc đó. Qua điểm A thuộc tia Ox kẻ đường thẳng song song với Oy cắt Oz ở M. Qua M kẻ đường thẳng song song với Ox cắt Oy ở B
a) chứng minh: OA=OB, MA=MB
b) từ M kẻ MH vuuong góc Ox, Mk vuông góc Oy . Chứng minh: MH=MK
Cho Ot là tia phân giác góc xOy, lấy M thuộc tia Ot, vẽ MA vuông góc với Ox. Vẽ MA vuông góc với Ox, MB vuông góc với OB
a) Chứng minh: MA = MB
b)Cho OA = 8cm, OM = 10cm. Tính độ dài MA
c) Tia OM cắt AB tại I. Chứng minh OM là đường trung trực của AB
Tự vẽ hình nhé ?
a) Vì Ot là tia phân giác của ∠xOy (GT)
=> ∠xOt = ∠yOt (tính chất)
Hay ∠AOM = ∠BOM (1)
Vì MA ⊥ Ox (GT)
=> ∠OAM = 90o (ĐN) (2)
Vì MB ⊥ Oy (GT)
=> ∠OBM = 90o (ĐN)
Mà ∠OAM = 90o (ĐN) (Theo (2))
=> ∠OAM = ∠OBM = 90o (3)
Xét ∆MOA và ∆MOB có :
∠OAM = ∠OBM = 90o (Theo (3))
OM chung
∠AOM = ∠BOM (Theo (1))
=> ∆MOA = ∆MOB (cạnh huyền - góc nhọn) (4)
=> MA = MB (2 cạnh tương ứng)
b) Xét ∆MOA vuông tại A có :
OA2 + MA2 = OM2 (ĐL pi-ta-go)
Mà OA = 8cm (GT), OM = 10cm (GT)
=> 82 + MA2 = 102
=> 64 + MA2 = 100
=> MA2 = 100 - 64
=> MA2 = 36
=> MA2 = \(\sqrt{36}\)
=> MA = 6cm
c) Từ (4) => OA = OB (2 cạnh tương ứng) (5)
Xét ∆IOA và ∆IOB có :
OA = OB (Theo (5))
∠AOI = ∠BOI (Theo (1))
OI chung
=> ∆IOA = ∆IOB (c.g.c) (6)
=> IA = IB (2 cạnh tương ứng)
Mà I nằm giữa A và B
=> I là trung điểm của AB (7)
Từ (6) => ∠AIO = ∠BIO (2 góc tương ứng)
Mà ∠AIO + ∠BIO = 180o (2 góc kề bù)
=> ∠AIO = ∠BIO = 180o : 2 = 90o
=> OI ⊥ AB (ĐN) hay OM ⊥ AB (8)
Từ (7), (8) => OM là đường trung trực của AB (đpcm)
Vậy ...