Tìm x, y thuộc Z biết: x^3+7y=y^3+7x
tìm x,y,z biết 3x-5y/2=7y-3z/3=5z-7x/4; x+y+z=17
Có:LCM(3,5,7)= 105
=>\(\frac{3x-5y}{2}\)=\(\frac{7y-3z}{3}\)=\(\frac{5z-7x}{4}\)sẽ bằng \(\frac{21\left(3x-5y\right)}{2.21}\)=\(\frac{15\left(7y-3z\right)}{3.15}\)=\(\frac{9\left(5z-7x\right)}{4.9}\)
Và bằng \(\frac{63x-105y}{42}\)=\(\frac{105y-45z}{45}\)=\(\frac{45z-63x}{36}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{63x-105y+105y-45z+45z-63x}{45+42+36}\)=0
=>3x-5y=0 ;7y-3z=0 ;5z-7x=0
Xét 3x-5y=0 và 7y-3z=0
Có: 3x=5y :7y=3z
=>\(\frac{x}{5}\)=\(\frac{y}{3}\);\(\frac{y}{3}\)=\(\frac{z}{7}\)
=>\(\frac{x}{5}\)=\(\frac{y}{3}\)=\(\frac{z}{7}\)
Áp dung dãy tỉ số bằng nhau ta có:
\(\frac{x+y+z}{5+3+7}\)=\(\frac{17}{15}\)
Do đó: \(\frac{x}{5}\)=\(\frac{17}{15}\)=>x=\(\frac{17}{3}\)
\(\frac{y}{3}\)=\(\frac{17}{15}\)=>y=\(\frac{17}{5}\)
\(\frac{z}{7}\)=\(\frac{17}{15}\)=>z=\(\frac{119}{15}\)
2.Thấy $15;117y$ chia hết cho 3
\Rightarrow $38x$ chia hết cho 3
\Rightarrow $x$ chia hết cho 3
Đặt $x=3a$ (a thuộc Z)
\Rightarrow PT trở thành: $38a+39y=5$
\Leftrightarrow $y=\dfrac{5-38a}{39}=\dfrac{a+5}{39}-a$
Đặt $ dfrac{a+5}{39} = b$ (b thuộc Z)
\Rightarrow $a=39b-5$
\Rightarrow $y=b- (39b-5)=5-38b$
$x=3 (39b-5)=...$
Với b nguyên
Nghiệm tổng quát: $(x;y)=(...;.....)$ với b nguyên
Tìm \(x,y\in Z\): \(x^3+7y=y^3+7x\left(x>y>0\right)\)
\(x^3-y^3=7\left(x-y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)=7\left(x-y\right)\)
\(\Leftrightarrow x^2+xy+y^2=7\)
Nếu \(y\ge2\Rightarrow x\ge3\Rightarrow x^2+xy+y^2>9>7\) (ktm)
\(\Rightarrow y< 2\Rightarrow y=1\)
\(\Rightarrow x^2+x+1=7\Rightarrow x\)
\(\Leftrightarrow x^3-y^3+7y-7x=0\\ \Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-7\left(x-y\right)=0\\ \Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-7\right)=0\\ \Leftrightarrow x^2+xy+y^2-7=0\left(x>y\Leftrightarrow x-y>0\right)\\ \Leftrightarrow x^2+xy+y^2=7\)
Vì \(x>y>0\) nên \(x^2< 7\)
Mà \(x\in Z\Leftrightarrow x^2\in\left\{1;4\right\}\)
Với \(x^2=1\Leftrightarrow\left[{}\begin{matrix}x=1\Rightarrow y^2+y-6=0\Rightarrow\left[{}\begin{matrix}y=2\\y=-3\end{matrix}\right.\\x=-1\Rightarrow y^2-y-6=0\Rightarrow\left[{}\begin{matrix}y=-2\\y=3\end{matrix}\right.\end{matrix}\right.\)
Với \(x^2=4\Leftrightarrow\left[{}\begin{matrix}x=2\Rightarrow y^2+2y-3=0\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\\x=-2\Rightarrow y^2-2y-3=0\Rightarrow\left[{}\begin{matrix}y=-1\\y=3\end{matrix}\right.\end{matrix}\right.\)
Vậy ...(loại mấy TH x,y<0 ra)
3x-5y/2=7y-3z/3=5z-7x/4 và x+y+z=17
Tìm x,y,z
Tìm x,y biết x3+7y=y3+7x
tìm x,y thuộc Z biết xy -7y +5x = 0 và y\(\ge\)3
Ta có
\(xy-7y+5x=0\)
\(\Leftrightarrow y=\frac{5x}{7-x}=-5+\frac{35}{7-x}\ge3\)
\(\Leftrightarrow\frac{35}{7-x}\ge8\Leftrightarrow7-x\le4\)
Vậy ta sẽ tìm x sao cho 7 - x là ước của 35 và \(0< 7-x\le4\)
\(\Rightarrow7-x=1\)
\(\Rightarrow x=6\Rightarrow y=30\)
Bạn alibaba nguyễn có thể giải thích cho mk hiểu chỗ
<=> y=5x/7-x=-5+35/7-x \(\ge\) 3
Mình không hiểu chỗ đó tại sao y chỗ 5x/7-x lại bằng -5+35/7-x \(\ge\)3
Sorry đã làm phiền bạn
Cho x y thuộc Z thỏa mãn
`x^2`+ `2xy` + `7x` + `7y` + `2y^2` + `10` = `0`
tìm gtnn và gtln của S= 2x+2y+2023
Tìm x , y , z biết :
a, 6x = 5y ; 7y = 8z và x + y + z = 69
b, 7x = 9y = 21z và x - y + z = -15
Cần gấp =(((
\(Tacó:\hept{\begin{cases}6x=5y\\7y=8z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow}}\frac{x}{40}=\frac{y}{48}=\frac{z}{42}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{40}=\frac{y}{48}=\frac{z}{42}=\frac{x+y+z}{40+48+42}=\frac{69}{130}\)
Suy ra \(\hept{\begin{cases}\frac{x}{40}=\frac{69}{130}\\\frac{y}{48}=\frac{69}{130}\\\frac{z}{42}=\frac{69}{130}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{276}{13}\\y=\frac{1656}{65}\\z=\frac{1449}{65}\end{cases}}}\)
Vậy \(x=\frac{276}{13};y=\frac{1656}{65};z=\frac{1449}{65}\)
\(6x=5y\) => \(\frac{x}{5}=\frac{y}{6}\)hay \(\frac{x}{20}=\frac{y}{24}\)
\(7y=8z\) => \(\frac{y}{8}=\frac{z}{7}\)hay \(\frac{y}{24}=\frac{z}{21}\)
suy ra: \(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}\)
đến đây bạn Áp dụng TCDTSBN
hk
tốt
Bài 1: Tìm x thuộc Z biết:
(x-3)+(x-2)+(x-1)+…+10+11=11
Bài 2: Tìm x,y thuộc Z biết:
a)(x-3)(2y+1)=7
b)(2x+1)(3y-2)= -55
c) xy+3x-7y=21