\(\left|7x+1\right|-\left|5x+6\right|=0\)
Giair các phương trình sau
\(a,\left|5x\right|=x+2\) \(b,\left|7x-3\right|-2x+6=0\)
\(c,\left|2x-3\right|-21=x\) \(d,\left|9-x\right|=2x\)
\(e,\left|x-15\right|+1=3x\) \(f,\left|5-4x\right|=4-5x\)
Ai giúp mik với ạ mik đang cần gấp
Mấy ý này bản chất ko khác nhau nhé, mình làm mẫu, bạn làm tương tự mấy ý kia nhé
a, \(\left|5x\right|=x+2\)
Với \(x\ge0\)thì \(5x=x+2\Leftrightarrow x=\dfrac{1}{2}\)
Với \(x< 0\)thì \(5x=-x-2\Leftrightarrow6x=-2\Leftrightarrow x=-\dfrac{1}{3}\)
b, \(\left|7x-3\right|-2x+6=0\Leftrightarrow\left|7x-3\right|=2x-6\)
Với \(x\ge\dfrac{3}{7}\)thì \(7x-3=2x-6\Leftrightarrow5x=-3\Leftrightarrow x=-\dfrac{3}{5}\)( ktm )
Với \(x< \dfrac{3}{7}\)thì \(7x-3=-2x+6\Leftrightarrow9x=9\Leftrightarrow x=1\)( ktm )
Vậy phương trình vô nghiệm
tìm x\(\left|7x+1\right|-\left|5x+6\right|=0\)
=>\(\left|7x+1\right|=\left|5x+6\right|\)
=>\(\left[\begin{matrix}7x+1=5x+6\\7x+1=-5x-6\end{matrix}\right.\)
=>\(\left[\begin{matrix}7x-5x=6-1\\7x+5x=-6-1\end{matrix}\right.\)
=>\(\left[\begin{matrix}2x=5\\12x=-7\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=\frac{5}{2}\\x=-\frac{7}{12}\end{matrix}\right.\)
Vậy...
giải hệ pt \(\left\{{}\begin{matrix}x^3+xy^2+x^2+xy+2y^2-2y^2=0\\\left(7x+1\right)\sqrt{5x+2y}+\left(7x+6\right)\sqrt{7y}=49x^2+49x+12\end{matrix}\right.\)
Giải phương trình
\(\left(x^2+x+1\right)\left(6-2x\right)=0\)
\(\left(8x-4\right)\left(x^2+2x+2\right)=0\)
\(x^3-7x+6=0\)
\(x^5-5x^3+4x=0\)
(x2 + x + 1)(6 - 2x) = 0
<=> 6 - 2x = 0 (do x2 + x + 1 > 0)
<=> 2x = 6
<=> x = 3
Vậy S = {3}
(8x - 4)(x2 + 2x + 2) = 0
<=> 8x - 4 = 0 (vì x2 + 2x + 2 > 0)
<=> 8x = 4
<=> x = 1/2
Vậy S = {1/2}
x3 - 7x + 6 = 0
<=> x3 - x - 6x + 6 = 0
<=> x(x2 - 1) - 6(x - 1) = 0
<=> x(x - 1)(x + 1) - 6(x - 1) = 0
<=> (x2 + x - 6)(x - 1) = 0
<=> (x2 + 3x - 2x - 6)(x - 1) = 0
<=> (x + 3)(x - 2)(x - 1) = 0
<=> x + 3 = 0
hoặc x - 2 = 0
hoặc x - 1 = 0
<=> x = -3
hoặc x = 2
hoặc x = 1
Vậy S = {-3; 1; 2}
x5 - 5x3 + 4x = 0
<=> x(x4 - 5x2 + 4) = 0
<=> x(x4 - x2 - 4x2 + 4) = 0
<=> x[x2(x2 - 1) - 4(x2 - 1)] = 0
<=> x(x - 2)(x + 2)(x - 1)(x + 1) = 0
<=> x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0
<=> x = 0 hoặc x = 2 hoặc x = -2 hoặc x = 1 hoặc x = -1
Vậy S = {-2; -1; 0; 1; 2}
+ Ta có: \(\left(x^2+x+1\right).\left(6-2x\right)=0\)
- Ta lại có: \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
- Vì \(x^2+x+1>0\forall x\)mà \(\left(x^2+x+1\right).\left(6-2x\right)=0\)
\(\Rightarrow6-2x=0\Leftrightarrow-2x=-6\Leftrightarrow x=3\left(TM\right)\)
Vậy \(S=\left\{3\right\}\)
+ Ta có: \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)
- Ta lại có: \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\forall x\)
- Vì \(x^2+2x+2>0\forall x\)mà \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)
\(\Rightarrow8x-4=0\Leftrightarrow8x=4\Leftrightarrow x=\frac{1}{2}\left(TM\right)\)
Vậy \(S=\left\{\frac{1}{2}\right\}\)
+ Ta có: \(x^3-7x+6=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)+\left(6x-6\right)=0\)
\(\Leftrightarrow x^2.\left(x-1\right)+x.\left(x-1\right)-6.\left(x-1\right)=0\)\(\Leftrightarrow\left(x-1\right).\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left[\left(x^2-2x\right)+\left(3x-6\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right).\left[x.\left(x-2\right)+3.\left(x-2\right)\right]=0\)\(\Leftrightarrow\left(x-1\right).\left(x-2\right).\left(x+3\right)=0\)
\(\Leftrightarrow x=1\left(TM\right)\)hoặc \(x=2\left(TM\right)\)hoặc \(x=-3\left(TM\right)\)Vậy \(S=\left\{-3;1;2\right\}\)
+ Ta có: \(x^5-5x^3+4x=0\)
\(\Leftrightarrow x.\left(x^4-5x^2+4\right)=0\)\(\Leftrightarrow x.\left[\left(x^4-x^2\right)-\left(4x^2-4\right)\right]=0\)
\(\Leftrightarrow x.\left[x^2.\left(x^2-1\right)-4.\left(x^2-1\right)\right]=0\)
\(\Leftrightarrow x.\left(x^2-1\right).\left(x^2-4\right)=0\)
\(\Leftrightarrow x=0\left(TM\right)\)
hoặc \(x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\left(TM\right)\)
hoặc \(x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\right)\)
Vậy \(S=\left\{-2;-1;0;1;2\right\}\)
!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!
\(\left|7x+1\right|-\left|5x+6\right|=0\)Mọi ng giúp mình với. Ai lm nhanh mình tick. Mình đag cần rất gấp
Ta có |7x + 1| - |5x + 6| = 0
<=> |7x + 1| = |5x + 6|
<=> \(\orbr{\begin{cases}7x+1=5x+6\\7x+1=-5x-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=5\\12x=-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{7}{12}\end{cases}}\)
Vậy \(x\in\left\{\frac{5}{2};-\frac{7}{12}\right\}\)
Tìm x, biết
\(\left(3x-5\right).\left(7x-5x\right)+\left(5x+2\right).\left(3x-2\right)-2=0\)
\(\left|7x+1\right|-\left|5x+6\right|=0\). Tìm x
mình đag cần rất gấp . Mọi ng giúp mình với
\(\left|7x+1\right|-\left|5x+6\right|=0\) <=> \(\left|7x+1\right|=\left|5x+6\right|\)
<=> \(\orbr{\begin{cases}7x+1=5x+6\\7x+1=-5x-6\end{cases}}\) <=> \(\orbr{\begin{cases}2x=5\\12x=-7\end{cases}}\) <=> \(\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{7}{12}\end{cases}}\)
a) \(^{ }\left(7x+4\right)^2-\left(7x-4\right)\left(7x+4\right)\)
b) \(^{ }8\left(x-2\right)-3\left(x^2-4x-5\right)-5x^2\)
c) \(^{^{ }}\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(x+1\right)\)
a: Ta có: \(\left(7x+4\right)^2-\left(7x-4\right)\left(7x+4\right)\)
\(=\left(7x+4\right)\left(7x+4-7x+4\right)\)
\(=8\left(7x+4\right)\)
=56x+32
b: Ta có: \(8\left(x-2\right)^2-3\left(x^2-4x-5\right)-5x^2\)
\(=8x^2-32x+32-3x^2+12x+15-5x^2\)
\(=-20x+47\)
c: Ta có: \(\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(x+1\right)\)
\(=x^3+3x^2+3x+1-x^3+1-3x^2-3x\)
=2
tìm x: a) \(\left|7x+1\right|-\left|5x+6\right|=0\)
b)\(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
a) |7x + 1| - |5x + 6| = 0
Vì |7x - 1| \(\ge\)0\(\forall\)x
|5x + 6|\(\ge\)0 \(\forall\)x
Do đó : |7x - 1| + |5x + 6| \(\ge\)0\(\forall\)x
Và |7x - 1| + |5x + 6| = 0
<=> 7x - 1 = 0 <=> x = 1/7
và 5x + 6 = 0 và x = -6/5 (vô lí)
=> x \(\in\varnothing\)
b) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
<=> \(\frac{3}{2}x+\frac{1}{2}=4x-1\)hoặc\(\frac{3}{2}x+\frac{1}{2}=-4x+1\)
<=>\(\frac{3}{2}x-4x=\frac{-1}{2}-1\)hoặc \(\frac{3}{2}x+4x=\frac{-1}{2}+1\)
<=> \(\frac{-5}{2}x=\frac{-3}{2}\)hoặc \(\frac{11}{2}x=\frac{1}{2}\)
<=>\(x=\frac{-3}{2}:\frac{-5}{2}\)hoặc \(x=\frac{1}{2}:\frac{11}{2}\)
<=> \(x=\frac{3}{5}\)hoặc \(x=\frac{1}{11}\)