\(\frac{y^2-x^2}{3}=\frac{x^2+y^2}{5}\) và x10:y10=1024
Tìm x,y
3) tìm x,y,z
a) \(\frac{x}{3}=\frac{y}{2};\frac{z}{5}=\frac{y}{4}\) và -x - y + z = -10
b) \(\frac{x}{2}=\frac{y}{3};\frac{z}{5}=\frac{y}{7}\) và x +y + z = 92
c) \(\frac{x}{3}=\frac{y}{4};\frac{z}{5}=\frac{y}{7}\) và 2x + 3y -z = 186
d) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x^2-y^2+2z^2=108\)
e) 2x = 3y ; 5y = 7z và 3x - 7y + 5c = 30
f) 2x = 3y = 4z và x + y + z = 169
g*) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và x - 2y + 3z = 14
h*) \(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}\) và x +y + z = 48
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
Bài 1: Tìm x và y, biết:
\(\frac{x}{y}=\frac{5}{3}\left(x^2+y^2=4\right)\) (x và y là 2 số tự nhiên khác 0 )
Bài 2: Tìm x; y; z biết: \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\left(x+y+z=138\right)\)
\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn
Bài 2:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Bạn tự làm nha
Bài 1 :
\(\frac{x}{y}=\frac{5}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)
\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)
Mà x ; y cùng dấu nên :
\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)
Bài 2 :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)
\(\frac{x}{10}=3\Rightarrow x=30\)
\(\frac{y}{15}=3\Rightarrow y=45\)
\(\frac{z}{21}=3\Rightarrow z=63\)
Tìm x, y, z biết:
a) \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10
b) \(\frac{x}{2}=\frac{y}{3};y:5=z:4\) và x - y + z = -49
c) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và x + 2y -3z = -20
a) Ta có: x/2 = y/3 => x/8 = y/12 (1)
y/4 = z/5 => y/12 = z/15 (2)
Từ (1) và (2) => x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2
x/8 = 2 => x = 2 . 8 = 16
y/12 = 2 => y = 2 . 12 = 24
z/15 = 2 => z = 2 . 15 = 30
Vậy x = 16; y = 24 và z = 30
b) Ta có: x/2 = y/3 => x/10 = y/15 (1)
y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) => x/10 = y/15 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7
x/10 = -7 => x = -7 . 10 = -70
y/15 = -7 => y = -7 . 15 = -105
z/12 = -7 => z = -7 . 12 = -84
Vậy x = -70; y = -105 và z = -84
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5
x/2 = 5 => x = 5 . 2 = 10
y/3 = 5 => y = 5 . 3 = 15
z/4 = 5 => z = 5 . 4 = 20
Vậy x = 10; y = 15 và z = 20.
1 . Tìm x,y,z
a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và 2.x2 + 2.y2-3.z2= -100
b) \(\frac{6}{11}.x=\frac{9}{2}.y=\frac{18}{5}.z\)và -x+y+z = -120
c) 2x = -3y =4z và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Tìm x,y và z biết
1 .\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{4}\)và x+y+z=46
2.\(\frac{x}{3}=\frac{z}{4};\frac{y}{2}=\frac{z}{3}\)và x-y-z=33
3.\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và 2x+3y-4z=93
4 . \(\frac{x}{2}=\frac{y}{3};2y=3z\)và x+y+z=49
Đỗ Ngọc Hải nhưg ko bt cách lm ^^ đúng ko Miki Thảo
Làm cho câu 1 vậy, các câu sau tương tự
\(\frac{x}{2}=\frac{y}{3}\Rightarrow x=y.\frac{2}{3};\frac{y}{2}=\frac{z}{4}\Rightarrow z=y.2\)
=> x+y+z = \(y.\frac{2}{3}+y+y.2=46\)
\(y.\left(\frac{2}{3}+1+2\right)=46\)
\(y.3\frac{2}{3}=46\)
=> \(y=12\frac{6}{11}\)
=> \(x=12\frac{6}{11}.\frac{2}{3}=8\frac{4}{11}\)
=> \(z=12\frac{6}{11}.2=25\frac{1}{11}\)
tìm x,y,z biết
a)\(\frac{x}{3}=\frac{y}{2},\frac{x}{5}=\frac{z}{7}\)và x+y+z=184
b) \(\frac{1}{2}.x=\frac{2}{3}y=\frac{3}{4}z\) và x-y =15
c) \(\frac{1}{2}x=\frac{2}{3}y\) và x2-y2=3
nhờ các bạn giải nhanh hộ mk
a) Ta có : x/3 = y/2 -> x/15 = y/ 10
x/5 = z/7 -> x/15 = z/21
=> x/15 = y/10 = z/21
và x+y+z= 184
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x/15 = y/10 = z/21 = x+y+z/ 184 = 15+10+21/ 184 = 4
Do đó: x= 60 ; y = 40 ; z = 84
Giải các hệ PT:
a) \(\frac{1}{2x-y}+x+3y=\frac{3}{2}\) và \(\frac{4}{2x-y}-5\left(x+3y\right)=-3\)
b) \(3\left(\sqrt{x-1}\right)-\frac{4}{\sqrt{y}-1}=-1\)và \(2\left(\sqrt{x-1}\right)+\frac{3}{\sqrt{y}-1}=5\)
c) \(\frac{1}{x+y}+\sqrt{y-2}=3\)và \(\frac{-2}{x+y}+5\sqrt{y-2}=1\)
d) \(\frac{2}{\sqrt{x}-3}+\frac{1}{\sqrt{y+1}}=\frac{13}{20}\)và \(\frac{5}{\sqrt{x}-3}-\frac{2}{\sqrt{y+1}}=\frac{1}{2}\)
mấy bài này thì bạn cứ đặt ẩn phụ cho dễ nhìn hơn mà giải nhé
a, \(\hept{\begin{cases}\frac{1}{2x-y}+x+3y=\frac{3}{2}\\\frac{4}{2x-y}-5\left(x+3y\right)=-3\end{cases}}\)ĐK : \(2x\ne y\)
Đặt \(\frac{1}{2x-y}=t;x+3y=u\)hệ phương trình tương đương
\(\hept{\begin{cases}t+u=\frac{3}{2}\\4t-5u=-3\end{cases}\Leftrightarrow\hept{\begin{cases}4t+4u=6\\4t-5u=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}9u=9\\4t=-3+5u\end{cases}}\Leftrightarrow\hept{\begin{cases}u=1\\t=\frac{-3+5}{4}=\frac{1}{2}\end{cases}}}\)
Theo cách đặt \(\hept{\begin{cases}x+3y=1\\\frac{1}{2x-y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+6y=2\\2x-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}7y=4\\x=\frac{y+2}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{4}{7}\\x=\frac{9}{7}\end{cases}}}\)
Vậy hệ pt có một nghiệm (x;y) = (9/7;4/7)
Tìm x,y,z. Làm theo cách đặt k dùm em nhakk
m) \(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\)và 3x+5y+7z=123
n) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x+y+z=49
p) \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)và xyz= -108
r) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và xy+yz+zx=104
s) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}\)và x2-xy+3yz=54
t) \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)và x2+y2-z2=585
u) \(\frac{x}{2}=\frac{y}{3}\frac{z}{4}\)và x3+y3+z3=792
m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
Do đó: x=8; y=10; z=7
n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}\)và x+2y+z =10
\(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}\)và x+y=18
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và 5x-z=20
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và 2x+y-z=9
2x=3y=5z và x-2y+3z=65
a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)
b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)
\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)
1.Tìm x;y;z biết :\(\frac{x}{3}=\frac{y}{4},\frac{y}{3}=\frac{z}{5}\)và 2x -3y +z=6
2.Tìm 2 số x,y bt rằng :\(\frac{x}{2}=\frac{y}{5}\)và x.y =40
Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=>x=27;z=36;z=60
Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)
+)k=-2 => x=-4;y=-5
+)k=2 => x=4;y=5
Vậy x=-4;y=-5 hoặc x=4;y=5